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Abstract. Genetic algorithms have had two primary applications for
neural networks: optimization of network architecture, and training
weights of a fixed architecture. While most previous work focuses on
one or the other of these options, this paper investigates an alterna­
tive evolutionary approach-breeder genetic programming (BGP)-in
which the architecture and the weights are optimized simultaneously.
In this method, the genotype of each network is represented as a tree
whose depth and width are dynamically adapted to the particular ap­
plication by specifically defined genetic operators. The weights are
trained by a next-ascent hillclimbing search . A new fitness function is
proposed that quantifies the principle of Occam's razor ; it makes an
optimal trade-off between the error fitting ability and the parsimony
of the network. Simulation results on two benchmark problems of
differing complexity suggest that the method finds minimal networks
on clean data. The experiments on noisy data show that using Oc­
cam's razor not only improves the generalization performance, it also
accelerates convergence.

1. Introduction

Constructing multilayer neural networks involves difficult optimization prob­
lems, such as finding a network architecture appropriate for the application
at hand, and finding an optimal set of weight values for the network to solve
the problem. Genetic algorithms (GAs) [8, 5, 20] have been used to solve
each of these optimization problems [36] . In weight optimization, the set of
weights is represented as a chromosome, and a genetic search is applied to
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the encoded representation to find a set of weights that best fits the train­
ing data. Some encouraging results have been repor ted that are comparable
with conventional learning algorithms [17] . In architect ure opt imizat ion, the
topo logy of the network is encoded as a chromosome, and genet ic operators
are applied to find an architecture that best fits t he specified tas k (according
to explicit design criteria).

The optimization of neural network architectures and the discovery of
minimal networks for particular applicat ions are important processes, be­
cause the speed and accuracy of learning and performance are dependent on
network complexity (i.e., the type and number of units and connections , and
the connectivity of units). For example, a network having a large number
of adjustable connect ions tends to converge quickly, but it usually leads to
overfitt ing of the training data. On the other hand , a small network will
achieve a good generalizat ion if it converges, but it needs, in general, a large
amount of training tim e [1, 32]. Therefore, the size of a network should be
as small as possible, yet sufficiently large to ensure an accurate fit ting of the
training set .

A general method for evolving genet ic neural networks was suggested
by Mi.ihlenbein and Kindermann [24] . Recent works, however, have used
GAs separately in each optimization problem, primarily focusing on opti­
mizing network topology. Harp et al. [7] and Miller et al. [15] have described
representat ion schemes in which the anatomical prop erties of the network
structure are encoded as bit-strings. A similar representation has been used
by Whitley et al. [36] to prune unnecessary connect ions. Kitano [11] and
Gruau [6] have suggested encoding schemes in which a network configura­
tion is indirectly specified by a graph-generation grammar that is evolved
by GAs. All of these meth ods use the backpropagation algorithm [29], a
grad ient-descent method , to train the weights of the network. Koza [12]
provides an alternative approach to the representation of neural networks,
under the framework of genetic programming (GP) , which enables modifi­
cat ion of not only the weights of a neura l network, but the architecture as
well. However, this method provides neith er a genera l method for represent­
ing an arbitrary feedforward network, nor a mechanism for finding a network
of minimal complexity.

In thi s paper we describe a new genet ic programming method , which
we call breeder genetic programming, that employs Occam's razor in the
fitness funct ion. This method makes an optimal trade-off between the error
fitting ability and the parsimony of the network; it prefers a simple network
architecture to a complex one, given a choice of networks having the same
fitting errors. The weights are not trained by backpropagation, but by a
next-ascent hillclimbing search.

The organizat ion of the paper is as follows. Section 2 presents a grammar
for representing multilayer feedforward neural networks. Section 3 describes
the genet ic operators and the contro l algorithm for adapting the architec­
tures and the weights. Section 4 derives the fitness function for the genet ic
search of minimal-complexity solut ions. The experimental results are given
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Figure 1: Architectures of multilayer perceptrons. While a commonly
used architecture adopts full connectivity between neighboring layers
only (left), the architecture used in this paper allows local receptive
fields and direct connections between non-neighboring layers (right).

in sect ion 5, followed by an analysis of fitness landscap es in sect ion 6, and
discussion in sect ion 7.

2. Representing neural networks as trees

Mult ilayer feedforward neur al networks (or multilayer perceptrons) [28, 16,
29] are networks of simpl e processing elements, called neurons or uni ts, orga­
nized in layers. The external inputs are presented to the input layer and are
fed forward via one or more layers of hidden units to the output layer. There
are no connect ions between units in t he same layer. A commonly adopted ar­
chit ecture allows full connectivity between neighboring layers only. We allow
both partial and direct connect ions between nonneighboring layers, because
this is imp ortant for finding a parsimonious archi tecture. Specifically, t his
allows for some input units to be connected directly to out put uni ts. Fig­
ure 1 compares a typical multilayer perceptron to a more general architecture
as adopted in thi s work. There are many types of neur al units; we confine
ourselves to McCullo ch-Pi t ts neurons [14], although the met hod we describ e
can be extended easily to other types of neurons.

The McCulloch-Pitts neuron is a binary device. Each neuron has a
threshold. The neuron can receive inputs from excitatory and/or inhibi tory
synapses. Given an input vector x , the net input of the ith unit , 1;, is com­
puted by

t, = L WijXj

jER(i)

where W i j is the connection weight from unit j to unit i, and R(i) denotes
the receptive field of unit i.

The neur on becomes act ive if the sum of weighted inputs exceeds its
threshold . If it does not , the neuron remains inactive. Formally, t he units
are act ivated by the threshold act ivat ion function

(2)

where ()i denotes the threshold value for uni t i . The ()i is usually considered
as a weight WiQ in (1), connected to an ext ra unit whose act ivat ion value is
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NN -----> ( YI 1'2 ... Ym )

Y -----> ( 'Y' r (j WI W2 .. . w, )
W -----> ( 'W' W {Y IX} )
X -----> 'X' i
(j -----> 8 bin 18in t

8 bin -----> - 1 1+ 1
8 int -----> - r I ... I 0 I ... I +r
W -----> O bin 1O int

O bin -----> - 11 + 1
O int -----> o1± 1 I ± 2 I ± 3 I ...
r -----> 1 I 2 13 1 ...

-----> 1 I 21 3 1 ..· In

Figure 2: Grammar for generating the genotype of a feedforward net­
work of McCulloch-Pitts neurons. A network is represented as a set
of m trees, each having an arbitrary number of subt rees. Each leaf of
the trees indexes one of the n external input units.

always 1. Despite their simplicity, McCulloch-Pi t ts neur ons are very power­
ful. In fact , it can be shown that any finite logical expression can be realized
by t hem [14J.

In the case of a two layer (one hidden layer) architecture , the ith out put
of the network , Yi, is expressed as a functi on of inputs x and weights w :

Yi = Ii ( L wij Ij ( L WjkXk ) )
j ER(i) kER(j)

where i, j , and k denote output , hidden, and input units, respectively. Note
that R(i ) can include input as well as hidden units, because direct connections
between input and output uni ts are possible (when t hey are present , the Ij
is an identi ty function).

For genetic optimization, we represent a feedforward network as a set of
m trees, each corresponding to one output unit . Figure 2 shows the grammar
for generating a feedforward network of n input and m output uni ts. The
nonterminal symbol Y is used to represent neur al uni ts (some of which are
output uni ts) having a threshold of (j and r weights. The integer r indicates
t he receptive-field width of the unit. Each connect ion weight is represented
as a nonterminal nod e W consist ing of a symbol 'w' and a weight value w,
followed by a nont erminal symbol indi cating recursively anot her neur al unit
Y or an exte rnal input uni t X . An external input is described by a symbol
'X' followed by an intege r i denoting the index of the input unit.

In our simulations, we used binary thresholds. McCulloch-P itts neurons
allow integer thresholds; however , networks with binary thresholds can realize
networks with integer th resholds by using addit ional neurons. Similarly,
integer weights can be realized by neurons using binary weights. The number
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u=3, k=13 u = 3, k = 11
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u e Z, k = 7

Figure 3: Conversion of a t ree into networks. The tree representa­
tion allows fine-tuning of the network st ructure. Integer weights of a
network are represented in a tree by means of multiple binary weights.

of weight s and units is typically reduced if the genotype is transformed into
a network of integer values. This is illustrated in figure 3, in which u and k
denote the number of unit s and adjustable weights , respectively.

Binary weights are useful because t hey can be trained by a simple hill­
climbing search, instead of an expensive gradient-base d method. A possible
disadvantage of binary weight represent ation is that it requires a larger chro­
mosome. However , t he use of integer rather than binary weight represent a­
tion does not reduce t he search space and, t herefore , does not automatically
accelerat e convergence. Anoth er advantage of the binary weight representa­
t ion is that it functions as a regularizing factor , by avoiding arbit rary growth
of chromosome size.

3. Genetic breeding of neural networks

3.1 Breeder genetic programming (BGP)

For the evolut ion of optimal neur al networks, we use the concepts based on
the breeder genet ic algorithm (BGA) of Miihlenbein et al. [25]. Whil e genet ic
algorithms typically mod el a natural evolut ion, t he BGA models a rational
selection performed by hum an breeders. The BGA can be considered as a
recombin ation of evolut ion st ra tegies [27, 30] and GAs [8, 5]. The BGA
uses truncation select ion as performed by breeders. This select ion scheme
is similar to the (J..L, A)-strategy in [30]. The search process of t he BGA is
mainly driven by recombination . Our approach in t his pap er differs from t he
BGA in that we use variable-size chromosomes, a characterist ic of GP [12].
Thus, we call our method breeder genetic programming (BGP). Wh ereas
GP uses fitness-proportionate select ion combined with crossover as t he main
opera tor, BGP uses t runcat ion select ion combined with crossover plus local
hillclimbing. As we show, ranking-base d select ion makes it easier to balance
the accuracy and parsimony of solut ions .

The BGP evolutionary learning algorithm is summarized in figure 4. The
algorithm maintains a population A consisting of M individuals A; of vari­
able size. Each individual represent s a neur al network. The networks of
the initial population , A(O), are genera ted with a random number of layers.
The receptive field and width of each neural un it are also chosen randomly.



B. T. Zhang and H. Miihlenbein204

1.

2.

3.

4.

5.

6.

Generate initial population A(O) of M networks at random. Set
current generation 9 f- 0.

Evaluate fitness values Fi(g) of networks using the training set
of N examples.

If the termination condition is satisfied , then stop the evolution.
Otherwise, continue with step 4.

Select upper TM networks of gth population into the mating
pool 8(g) .

Each network in 8(g) undergoes a local hillclimbing, resulting in
revised mating pool 8(g).

Create (g + l)th population A(t + 1) of size M, by applying
genetic operators to randomly chosen parent networks in 8(g) .

7. Replace the worst fit network in A(t + 1) by the best in A(t) .

8. Set 9 f- 9 + 1 and return to step 2.

Figure 4: Summary of the BGP algorithm.

The (g + l)th population, A(g + 1), is creat ed from A(g) in three steps:
selection , hillclimbing, and mating.

In th e selection step , the most fit individuals T Min A(g) are accept ed into
the mating pool 8(g) . The parameter T determines the selection intensity,
and has a value from the interval (0,1] . A fitness function that balances the
error fitting ability and th e parsimony of th e networks is derived in section 4.
After selection, each individual in 8(g) undergoes a hillclimbing search in
which the weights of the network are adapted by mutation. This results
in the revised mating pool 8(g). The mating phase repeatedly selects two
random parent individuals in 8(g) to mat e and generate two offspring in the
new population A(g+ 1) by applying crossover operators, until th e population
size amounts to M. Note that the size of individuals in one population may
differ, IAi(g)1 =l-IAj(g)l ,i =l-j and i,j E {1, ..., M }, and the size of th e same
individual in a subsequent population also may differ , IAi(g + 1)1=I- IAi (g) l,
i E {I , ..., M} .

A new population is generated repeat edly until an acceptable solution is
found , or the variance of th e fitness V(g) falls below a specified limit value
Vmin; that is, th e procedure terminates if

1 M _ 2

V(g) = M 'L..(Fi(g) - F(g)) < Vmin
i = l

(4)

where P(g) is the average fitness of the individuals in A(g) . In addition, th e
algorithm terminat es if a specified number of generations, gmax, is carried
out .
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Figure 5: Crossover operation . Parent 1 and parent 2 mate by cross­
ing over , and produce two new individuals (offspring 1 and offspring
2). In this example, the first network shrank, whereas t he second
grew. Guided by an appropriat e selection mechanism, t he network
archit ecture is adapted in this way to the specific applicat ion.

3.2 Genetic operators

The weights of a network are trained by applying a hillclimbing search to each
of th e individuals accepted by truncation selection . Given a chromosome Si ,

the next-ascent hillclimbing procedure finds a better chromosome sjew by
repeat edly applying the mut ation operator, until no weight configura tion
th at has better fitness can be found in each sweep through th e individual.
The sequence of mutation is defined as th e depth-first search order.

Each mut ation operation is performed by replacing the value of a node u;
by another; that is, by finding th e class Uk of u; and replacing U i by another
member Uj , j of i in the set Uk. First , the class Uk must be found , because
some values (nodes) cannot be mut at ed to arbitrary values. For example, a
weight value must be drawn from th e set {+ 1, - I } . The biases are mutated
in the same way as th e weights. The index for the input units can be mutat ed
by another input index.

Unlike mut ation, the crossover operator adapts the size and shap e of the
network architecture. A crossover operation starts by randomly choosing two
parent individuals from th e mating pool B(g). The actual crossover of two
individuals i and j is performed on their genotypical represent ations Si and
Sj' The nodes in the tree are numbered according to the depth-first search
order , and crossover sites c; and Cj are chosen at random, with the conditions

1 ::; Ci ::; Size(si) and

where th e length Size(si) of an individual is defined as the total number of
units and weights.

Given th e crossover points, t he subtrees of two parent individuals s, and
Sj are exchanged to form two offspring s; and sj (see figure 5). The label of
th e nodes Ci and Cj must belong to the same class, that is, they both must be
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eithe r Y-type or W -type nodes. The number of arguments of each operator
plays no role, because the syntactically correct subtree under the node c, and
Cj is completely replaced by another syntactically correct subtree.

4 . Fitness function with Occam's razor

Occam's razor states that simpler models should be preferred to unnecessarily
complex ones [13, 33]. This section complies with Occam's razor by giving a
quantitative method for using GAs to const ruct neural networks of minimal
complexity.

In defining crite ria for minimality, it is important that the network be
able to approximate at least the training set to a specified performance level.
The algorithm should prefer a smaller network to a larger network only if
it achieves a comparable or bet ter performance. Otherwise, t he algorit hm
would not reduce the approximation error, preferring smaller networks that
cannot be powerful enough to solve the tas k. Thus, th e first term of the
fitness function of an individual network should be th e error function . The
error function commonly used for th e dat a set D = {( Xi,Yi) I i = 1, ... , N} of
N examples is th e sum of the squared errors between th e desired and actual
outputs:

with

N

E( D IW; A) = :LE(Yi IXi,W, A)
i = l

m

E(Yi I Xi ,W, A) = :L (Yij - OJ(Xi ;W; A))2 ,
j= l

(5)

(6)

where Yij denotes the jth component of the ith desired out put vector Yi, and
OJ(Xi;W; A) denotes the j th actual output of the network with architecture
A and set of weights W for the ith training input vector Xi.

The complexity of a neural network architecture is dependent upon the
task to be learned and can be defined in various ways, depending on the
applicat ion. In general, t he number of free parameters (or adjustable weights)
of th e network should be minimal, since thi s is one of th e most important
factors determining the speed and accuracy of learning. In addition, large
weights generally should be penalized, in the hope of achieving a smoother or
simpler mapping-this technique is called regularization [26, 13]. We define
th e complexity C of a network as

K

C(W IA) = :Lw~
k= l

(7)

where K is the numb er of free parameters. Note th at K can be arbitrarily
large, because we fit t he architectures as well. In the case of binary weights, C
reduces to th e number of synaptic connect ions. This measure of complexity
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might be extended by additional cost terms (such as the number of layers)
when the application requires a fast execution of the trained network .

The combined fitness function that we try to minimize is defined as

F(D Iw, A) = aC(W IA) +(3E(D IW,A) (8)

where a and {3 are constants for the trade-off between error fitting and com­
plexity reduction. This fitness function has an elegant prob abilistic interpre­
tation for the learning process: according to the Bayesian framework , mini­
mizing F is identical to finding the most probable network with architecture
A and weights W .

To show this, let us define the following. Let D be th e training data set
for the function 'Y : X -+ Y, that is,

D = {(x , y) I x E X, Y E Y, y = 'Y(x)}. (9)

A model M of the function 'Y is an assignment to each possible pair (x, y)
of a number P(y I x) representing the hypothetical probability of y given x .
That is, a network with specified architecture A and weights W is viewed as
a model M = {A ,W} that predicts the outputs y as a function of input x,
in accordance with the probability distribution

P( I W A) = exp( - (3E(y I x ,W,A))
y x , , Z({3) , (10)

where (3 is a positive constant which determines the sensitivity of the prob­
ability to the error value, and

Z(f3) = Jexp( - {3E(y I x ,W,A))dy (11)

is a normalizing constant (see [35]) . Under the assumption of the Gaussian
error model (i.e., if the true output is expected to include additive Gaussian
noise with standard deviation a), we have

P( I WA) = _1_ (_ E(y I x , W,A))
y z , rro= exp 2 2

y2-rra a
(12)

with (3 = 1/(2a2
) and Z({3) = V'I/ffa.

A prior probability is assigned to the alternative network model written
in the form

P(W IA) = exp( -aC(W IA))
Z(a) ,

where

Z(a) = Jexp( -aC(W IA))dKW

(13)

(14)
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is a measure of the characteristic network complexity. The posterior proba­
bility of th e network model is t hen

with

P(W I D A ) = exp(-aC (W I A) - (3E (D I W , A ))
, Z (a , (3 )

Z (a , (3 ) = Jexp(-aC(W IA) - (3E(D IW ,A))dKW

(15)

(16)

Let -I(M ) be th e log of th e prior probability of the model M , th at is,

I (M ) = - log P(W IA).

Let - I( D IM) be the log probability of D according to M :

N

I (D IM) = - 2)ogP(y I x, W,A).
i=l

Then the prob ability that both M is t rue and D occurs is

p(M) = exp( - I( D ,M)),

where

I (D , M ) = I (M ) + I (D 1M ).

(17)

(18)

(19)

(20)

It is well known that this p results as the posterior probability of M , and
the model which maximizes p(M ) would be the best fit . For most real
app licat ions, I (D ,M ) cannot be computed exactly because the probabilities
involved are not known. But it is evident that minimization of the fitness
funct ion (8) app roximates maximizat ion of p(M) under the assumption (12).

5. Simulation results

The convergence and generalizat ion properties of the BGP meth od were stud­
ied on two classes of prob lems, of differing complexity: majority and parity.
The majority funct ion of n inputs (n odd) returns a 1 if more than half of the
input units have a 1, otherwise it returns a O. The parity function outputs
a 1 if the number of l 's in the input pat tern of size n is odd, otherwise it
outputs a O. These tasks were chosen because they have often been used to
test neural net learning algorit hms, and results can be compared with the
standard solutions. It is important to observe that the genet ic search is per­
formed in a variab le d-dimensional space, and the minimal d is usually much
larger than the input size n, depending on the task.

In our experiments, we used the fitness function

F (D IW;A) = E'( D IW , A) + ~C' (W IA ) (21)
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t.:2J popsize ~ layers~ weights ~ genera t ions I
majority 3 100 1 1 4 2

5 100 2 2 15 8
7 500 2 4 21 11
9 1000 2 6 31 13

parity 2 100 2 3 9 2
4 1000 2 6 49 9
6 1000 3 12 105 31
8 1000 3 15 136 83

Table 1: Network complexit ies for discovered minimal solut ions, in
terms of the number of layers, units, and weights. Also shown is
t he number of generat ions requir ed to obtain the solut ion. An elit ist
selection strategy with top 20% truncation was used.

where E' is a normalized version of equation (5) ,

E' (D IW, A) = E(~ I . ~ A) ,

209

(22)

where m denotes the numb er of output units and N the size of the training
set . Note that the error term satisfies 0 :::; E' (D IW, A) :::; 1. G' is a revised
measure of network complexity, defined as

G'(W IA) = G(W IA) + L (A) + U(A) ,
Gm ux

(23)

where L(A) and U(A) denote the numb er of layers and units, respectively.
Gm ux is a normalization factor used for the complexity term to satisfy 0 <
G'(W IA) < 1.

In all experiments we set Gm ux = 1000, assuming t hat the problems can be
solved by G(W IA) +L (A) +U(A) :::; 1000. The L (A) term penalizes a deep
architecture which requires a large execut ion t ime after t raining. T he U( A)
term penalizes a large numb er of units whose realization is more expensive
than weights. The normalization of the functions does not hinder the prob­
abilistic interpretat ion of network learning, because we are using a ranking­
based selection st rat egy, not proportionate select ion: for survi val, only the
ranking is imp ortant . Note t hat in (21) the complexity term G'(W I A) is
divided by N , the numb er of t raining examples, so that the error term plays
a major role in determining the total fitness value of the network.

We performed two separate series of experiments . In t he first , we were
interested to see whether the BGP method would be able to find minim al
or subminimal solutions at all and, if so, how the method would scale with
problems of increasing complexity. In thes e experiments, the ent ire set of
N = 2n examples was used to evaluat e the fitness of t he individual networks,
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u=5, k=20, b=31 u= 6, k= 23, b = 33

Figure 6: Solutio ns for the 4-input parity problem. Compared with
the known minimal solution (left), t he typical solution found by BGP
(right) cont ains one more unit (u), three additiona l connection weights
(k) , and two more binary-valued connections (b) than t he minimal
solution.

and the examples were noise-free. For the second series of experiments, we
tested th e performance of BGP on noisy data. The generalizat ion perfor­
mance and learning speed of different strategies were compared, to study the
effect of Occam 's razor .

The results for the first exper iments are summar ized in table 1, which
shows the complexity of minimal solutions discovered and the time required
(in generations) . The number of weights is given in the table in terms of
the number of connections and thresholds with binary values. For all exper­
iments , the top 20% of the population was selected for mating. The most fit
individual was always retained in the new generation (truncation selection
with an elit ist st rategy) .

The network counte rpart of most of the solut ions was found to be minimal
or subminimal in comparison to the standard solut ions. This is illustrated
in figure 6, which depicts a solution for th e 4-input parity problem as found
by thi s method . For comparison, the minimal solution for th is problem is
also depicted. Whereas th e fitness value of the solut ion found by our met hod
is Ffound = 0.0026, th at of the minimal solution is F m in = E' + ( Weights +
Layers+ Units )/(24 ·1000) = 0.0024. No general learning method is yet known
to find such a solution (in terms of both architecture and weight values). Most
exist ing search methods, including iterated hillclimbing meth ods [4, 18, 31],
simulat ed ann ealing [10], backpropagation [29], and even other GAs [2], work
on a search space of fixed size, while our search space is of variable size. This
difference of ability, combined with the difference in parameters used in each
algorithm, makes the comparison of learning speeds difficult.

The fitness function worked well in balancing the ability to solve the
problem with th e parsimony of the solut ion. A typical evolution of network
complexity is shown in figure 7. Globally, the complexity of the network
grows during evolut ion; locally, growth and pruning is repeated to fit errors
on the one hand and to minimize the complexity of the network on the other.
The corresponding evolution of the fitness values of the best individuals in
each generation is depicted in figure 8. It is interesting to note that t he global
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Figure 7: The evolut ion of network complexity, in t erms of t he numb er
of weight s C , layers L , and unit s U for the most fit ind ividual in
each generat ion. Growth and pruning are repeated to find an opt imal
complexity that is parsimonious yet large enough to solve the problem.
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Figure 8: The evolution of t he network fitness F , decomposed into
the normalized error E' and the extended complexity C'. In spite of
a fixed factor moti vat ed by Occam 's razor , the relative importance of
the complexity term increases as evolution proceeds.
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- - - learning error
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generation

Figure 9: The evolutio n of network performance, for noisy dat a, of
the nine-input majority funct ion . Also shown is the generalizat ion
performance on the complete test set of noise-free examples.

method layers units weights

F = E 9.7 ± 1.9 153.0 ± 76.4 1026.0 ± 526.1

F = E + C 3.7 ± 0.3 19.7± 1.1 123.1 ± 10.3

Table 2: Network complexity with and without Occam's razor

behavior of this optimizati on method is comparable with that of the group
method of data handling (GMDH) in which additional terms are incremen­
tally added to the exist ing polynomial approximator to achieve a minimal
description length model of a complex system [9, 34].

The performance of the BGP method on noisy data was tested using
the maj ority problem with nine inputs. In each run, we used a training
set of 256 examples.with 5% noise (which means that, on average, 12 or 13
examples out of 256 have false output value) . Population size was 1000, and
the top 20% most fit individuals were selected to mate. Figure 9 shows a
typical evolut ion of the fitness value of most fit individuals until the 50th
generation. For comparison we also depict the generalizat ion performance
on th e complete test set, consist ing of 512 noise-free examples. Although th e
test set was not used for selection, the tr aining error and the generalization
error correspond well.

The performance of the BGP method using the fitness function of (21)
was compared with a meth od that uses the error term alone as the fitness
measure, that is, F(D IW, A) = E' (D IW,A) . Both mothods used the same
noisy data from the 9-majority problem. For each method , 10 runs were
executed until th e 50th generation to observe th e training and generalizat ion
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meth od learni ng generalizat ion learning time

F= E 95.2 ± 0.7% 92.4 ± 1.4% 20294.7 ± 3019.4

F =E +C 92.9 ± 2.1% 92.7 ± 1.6% 5607.2 ± 67.2

Table 3: Comparison of performance with and without Occam's razor
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performance of the solut ions. Table 2 shows the average network size found
at the 50th generation. The corresponding performance and learning time
are shown in table 3. The learn ing time is measured in millions of evalua­
tions of arithmetic operations associated with calculating act ivation values of
neural units. The results show that using Occam's razor leads to decreased
performance on the training set, but eventually result s in an improved gen­
eralization performance. We attribute this effect to th e tendency of Occam 's
razor to avoid overfitting to noisy data. Another advantage of Occam 's razor
is accelerated convergence. In our experiments, the proposed fitness func­
tion decreased the network size by an order of magnitude, and learning was
accelerated by a factor of approximately 4.

In general, the meth od evolved a subminimal architecture that was, in
most cases, an optimal solut ion (in terms of the parameters chosen for bal­
ancing the error fitting ability with the complexity of th e solut ion). For some
classes of large problems, however , the convergence was very slow. For a rea­
sonably large class of binary functions of size n , th ere exists no simple opti­
mization method that performs better t han any other. To be effective, every
sophisticated opti mization met hod must be tuned to the applicat ion [22]. In
order to assess the complexity of an opt imization problem, and to speed up
the genetic search, an investigation of its fitness landscapes is necessary.

6. Analysis of fitness landscapes

Fitness landscapes have been analyzed for Boolean N- K networks by Kauff­
man [3], for random traveling salesman problems (TSPs) by Kirkpatrick et
al. [10], and for Euclidean TSPs by Miihlenbein [21]. The general character­
ization of a fitn ess landscape is very difficult . The number of local optima,
th eir distribution, and the basins of at traction are some of the important
parameters which describe a fitness landscape. For th e evaluat ion of search
strategies, more specific questions must be answered:

• What is the distribution of local optima if the error term alone is used
for the fitness function?

• How does the distr ibution of local optima change if the search space is
enlarged?

These two questions are first steps towards a statement of th e general prob­
lem:
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• Does the fitness function of (21) make the fitness landscape simpler or
more complex when compared to an error-based fitness function with
a fixed minimal network architecture?

These quest ions have been studied in the context of two problems: XOR

and OR functions of two inputs. For each problem, we analyzed two search
spaces of different dimension. One was a feedforward network of 2-2-1 archi­
tecture that had nine free parameters (six binary weights plus three binary
thresholds). The other search space was a 2-3-1 architecture having t hirteen
free parameters (nine binary weights plus four binary thresholds) . In de­
scribing these landscapes, we must focus on t heir statistical characterist ics,
because the spaces are too large to list all t he det ails. For this analysis, the
fitness function consisted of the error term only; the coefficient a in (8) was
set to zero, and {3 = 1.

T he fitness distribut ions are shown as bargraphs in figure 10. Note that
each of the XO R and OR networks had two binary inputs, resulting in four
input-output pairs. Hence, a specific network could have one of only five
fitness values (0 if all four examples are classified correctly, 1 if one example is
classified incorrectly, and so on) . T he analysis shows t hat the XOR-9 network
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had only two (= 0.4%) isolated global optima, while the OR-9 net had fifteen
(= 2.9%) optima. Growth of t he dimension from 9 to 13 increased the
proportion of optima of XOR by 0.2%, but reduced that of OR by 0.2%. The
bargraphs also show that the fitness of OR-9 was more uniformly distributed
than that of xOR-9, suggest ing t hat a search step in the OR network space
would get more information than a step in the XOR space.

To see how the local optima vary, we computed the probability of an
individual i finding a better, same, and worse fit neighbor n by a single
mutation (figures 11 and 12). By a better fit neighbor n of i, we mean that
E; is smaller than Fi , since we attempt to minimize the fitness function . We
see, for instance, that the probability of finding a better neighbor for XOR-9
is only 8.4% if the fitness of the indiv idual is 0.5. For OR, the corresponding
probability is 36.0%. A very important result can be concluded from the
bargraphs for fitness value 0 in figures 11 and 12. For XOR with a minimal
network architecture (d = 9), all global minima are isolated; no neighbors
are global optima. However, for the enlarged search space (d = 13), there
is a 19.2% chance that another global optimum can be reached by one-bit
mutation. The same behavior can be observed for the OR problem. This
analysis suggests that the increase of the dimensionality of the search space
from 9 to 13 leads to a change in the fitness distributions and landscapes,
which in turn can make it easier to train the weights .

We also computed the probability of a configuration finding a better fit
neighbor by steepest-descent hillclimbing, that is, by looking at all of its
neighbors at Hamming dist ance 1. Not surprisingly for this kind of landscape,
there is for XOR a less than 50% chance of finding a better configuration. For
OR, the probability is about 70%. This means steepest-descent hillclimbing
would be effective for OR, but not for XOR. This explains in part why our
experiments showed a better scaling property for the majority functio n (a
kind of OR) in comparison to the parity prob lem (whose smallest size is
XOR) .
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7. Discussion and conclusions

We have presented an evolutio nary method for learning both the architecture
and the weights of a network at the same time. This method uses trees to
represent a feedforward network whose size and topology are dynamically
adapted by genetic operators. A new fitness function th at uses Occam 's
razor has been proposed, which proved to work well for the class of problems
studied. Simulation result s indicate th at , given enough resources, the method
finds minimal-complexity networks. Experiments on noisy data show that
using Occam's razor not only improves the generalizat ion performance, but
accelerates the convergence of genetic programming as well. Exte nsions and
refinements are expected in the following areas.

Information about the fitness landscape can be used to accelerate conver­
gence. As we have shown, the fitness landscap es are characterized by large
plateaus . The basin of attraction of the global optimum is fairly small. We
have also seen that the fitness landscapes are changed by modifying th e ar­
chitectures. It is expecte d that fitness land scapes will generally have large
plateaus as th e network complexity approaches a minimum , which makes it
difficult for a hillclimber to reach the minimum. A possible method of ac­
celerat ing the convergence speed would be to start with networks th at are
supposed to be larger than minimal, and to prune the network with the Oc­
cam factor. This is supported by th e results of the landscape analysis; the
increase of the dimensionality of the search space leads to a larger chance of
finding better solut ions in the near of global optima.

Another factor that merits future study is the effect of the training set
on the convergence speed and generalizat ion performance of the algorit hm.
GP involves a time-consuming process of evaluating training examples. The
fitness evaluation tim e can be shortened enormously if we have an efficient
method for select ing examples crit ical to specific tasks [38, 37, 40J. The
integrati on of active dat a selection to GP should improve the efficiency and
scaling prop erty of the method we have described.

Whereas we have used a simple next-ascent hillclimbing for adjustment
of discrete weights , other tradit ional search methods might well be used for
this purpose. Examples include iterat ed hillclimbing procedures developed
in symbolic artificial intelligence [4, 18, 31]. The discrete-valued weights
may be extended to more general real-valued weights. In this extension, it
will be necessary to modify or replace th e discrete hillclimbing search by a
continuous parameter optimization meth od, which could be GAs [25, 30] or
conventional gradient-based search methods [29]. Note th at this adaptation
does not change th e top-level structure of the BGP method described in
figure 4.

As opposed to convent ional learning algorithms for neural networks, the
GP method makes relatively few assumptions about network types. Thus,
the same method also can be used to breed other network architectures,
such as networks of radial basis functions, sigma-pi units, or any mixture,
instead of the threshold or sigmoid unit s. The potential for evolving neural
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architectures that are customized for specific applications is one of the most
interesting properties of GAs. On t he other hand , neural net optimizati on
provid es a very interesting problem worthy of further theoretical st udy from
the GA point of view. For example, t he problem we have discussed involved
chromosomes of variable lengths, through which the fitness landscape was
modified during evolut ion. This kind of optimizat ion problem can be con­
trasted to the usual applications of GAs, in which t he search space is fixed.

The ultimate usefulness of the BGP method must be test ed by impl ement­
ing it in systems that solve real-world problems, such as pattern recognition
or t ime-series prediction. To this end, we may need extensions to t he current
implementation . We believe, however, that the genera l framework and the
fitness function provided in t his pap er are of value, because the pr oblem of
balancing the accuracy with the complexity of a solution is fund amental in
both neur al networks and genet ic programming.
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