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Abstract. Two examples of dynamical systems with spatial almost
periodicity are considered and the complexity growth during the time
evolution is quantified.

The first example deals with almost periodic cellular automata
(CA). The growth rate of the information which is needed to store a
configuration can quantitatively be given by a real number which is
bounded above by the dimension of the CA.

In the second example, where periodicity is understood in the clas-
sic sense of Bohr, the collision-free Boltzmann equation is considered.
The method of characteristics allows the proof of an existence theorem
for almost periodic initial conditions. A Lyapunov exponent measures
the growth of complexity during the evolution.

1. Introduction

Generally speaking, any physical system that can have periodic boundary
conditions can also be considered in an almost periodic setup. Almost peri-
odicity allows averaging and yields global translational invariant quantities.
While this is also possible in more general ergodic setups, almost periodicity
has the feature of strict ergodicity so that the mean is defined by a single
configuration alone. The hull, the closure of all translates of an almost peri-
odic configuration, is a compact topological group on which averaging with
respect to the unique Haar measure gives macroscopic quantities. Almost
periodic configurations can have more than the obvious translation symme-
try because the dimension of the hull of the function is in general larger than
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the space on which the functions are defined. The other modes of symmetry
are internal symmetries of the system.

Almost periodicity appears in the literature mostly for systems with an
almost periodic time-dependent forcing term or when almost periodic solu-
tions of the systems are considered. This is not the topic here. We consider
particle configurations which have spatial almost periodicity and evolve them
with a time-independent law. Actually, we are interested in situations where
the complexity grows during the evolution, making it impossible that the
solution is also almost periodic in time.

In section 2, we reconsider almost periodic lattice gas automata, for which
almost periodicity is understood in the sense of minimality. In section 3, we
look at spatial Bohr almost periodic Vlasov systems in which context spatial
almost periodicity appears to be new. In both situations, the time evolution
renders the configuration increasingly hard to describe and there is a measure
for the growth of complexity.

First, we mention three other spatially almost periodic dynamical sys-
tems, which belong to the same type we are interested in but which we do
not discuss any further in this paper.

1. Almost periodic KdV and Toda systems. The almost periodic Korte-
weg-de Vries (KdV) equation introduced in [12] is an example where spatial
almost periodicity appears in fluid dynamics. It is defined as the isospectral
deformation of a one-dimensional almost periodic Schrodinger operator L =
—A 4+ V, where V is a Bohr almost periodic function. It is a model for
an almost periodic fluid in a shallow water channel. If V is periodic, one
obtains the KdV equation with periodic boundary conditions as a special
case. A discrete version of the almost periodic KdV is the almost periodic
Toda system [7]

f=exp(f(z +a) = f(z)) —exp(f(x) = f(z = )
on the space of continuous periodic functions f. It describes a chain of
oscillators with position f, = f(x + na) which are nearest neighbor coupled
by an exponential potential:

Jn= exp(fn+1 - fn) - eXp(fn - fnfl)'

If & = p/q is rational, then f,y, = f, and the system is the periodic Toda
lattice. It can be integrated by conjugating the flow to a linear flow on the
Jacobi variety of a Riemann surface defined by the isospectrally deformed
Jacobi matrix. In the almost periodic case, one still has an isospectral defor-
mation of an almost periodic Jacobi matrix. However, an infinite dimensional
generalization of the algebro-geometric integration is expected to work only
in very special cases.

2. Almost periodic discrete parabolic or hyperbolic PDEs. Coupled
map lattices are dynamical systems which are used to model partial differen-
tial equations (PDEs). They can be viewed as “CA with a continuum alpha-
bet.” Such systems appear in numerical codes for PDEs. They became pop-
ular especially with the work of Kaneko, Bunimovich, and Sinai because they
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provide systems with “space-time chaos” which has an easy proof using an
idea of Aubry [6]. An almost periodic example of a coupled map lattice is the
evolution f +— ¢(f)(z) = e L, (f(z+a;)+ f(x— ;) +V(f(z)) on the space
of continuous functions on the d-dimensional torus, where © — x + «; are
translations. The aperiodic configuration f, = f(n-a) withn € Z¢ = {n =
Y4 nie; } evolves in time according to f, — € Z?zl(fnﬂj + free;) FV(fn)-
The name “coupled map lattice” comes from the fact that for e = 0, the
system is an array of decoupled maps f, — V/(f,.), which become cou-
pled when € > 0. Again, if all a; are rational, these configurations are
periodic, if « is irrational the configurations are almost periodic. Not only
parabolic PDEs but also hyperbolic PDEs such as nonlinear wave equations,
have discrete analogues as symplectic coupled map lattices. An example is
(fis90) = (Ferrs gen) = (]2, f(x 4+ i) + f(& = )] + V(f (), fo) on pairs
of periodic functions on the torus. This discrete PDE can be rewritten as
ferr = 2fi + fior = e XLy (filz + i) = fl2) + file — ai)) + W(fy(2)) with
W(f) = (V(f(x)) — 2f 4+ 2def). This is a discrete version of a nonlinear
wave equation because f;, = fi(n - a) satisfies the discrete nonlinear wave
equation fiy1n — 2fin + ficin = D (fimte: = 2ftm + frn—e) + W(fin),
a discretization fi = eAf + W(f). For e = 0, it is an array of decoupled
Henon type twist maps. For a cubic polynomial W, it occurs as the Euler
equations of a natural functional [8].

3. Almost periodic Riemannian geometry and Vlasov—Einstein
dynamics. Almost periodicity is also interesting in a differential geometric
setup, where interacting particles move along geodesics. An almost periodic
metric g on Euclidean space defines an almost periodic Riemannian manifold
on which one can average. In some sense, such a manifold looks like a torus
because the mean of the curvature gives zero. Averaging through almost pe-
riodicity could be interesting in general relativity, because the Hilbert action
is still defined by an almost periodic mean. Without a compactness assump-
tion on the manifold, this would only be possible by assuming asymptotic
flatness of the metric. A metric solving the almost periodic Einstein equa-
tions is a critical point of a well defined variational problem. The classic
Vlasov equation considered here has as a relativistic analogue the Vlasov—
Einstein equation 4/V, P — Fijiyj V. P = 0, which describes matter not
interacting through a potential but through the metric: the connection I' is
determined from a metric g solving the Einstein equations G(g) = 87T(P).
Existence results are only known in very special situations. Solving the Ein-
stein equations in the almost periodic case and a better understanding of the
geodesic flow in an almost periodic metric are problems that have not yet
been addressed.

2. Almost periodic lattice gas automata

Lattice gas CA are used for numerical simulations of fluids. They provide a
reasonable numerical method when the fluid has complex geometric boundary
conditions. Almost periodic CA [4] can store and process large periodic
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configurations in a compressed form and allow for dealing with infinite aperi-
odic configurations. The size of the data used to store the configuration
measures the complexity of the fluid. The growth rate of this information is
a numerical quantity which can be determined. As in the case of the entropy
for smooth dynamical systems, one cannot expect to compute it explicitly in
general.

The term “almost periodicity” for CA is used as a synonym for minimal-
ity, a common terminology in mathematical physics that is different from the
mathematical term of Bohr almost periodic functions considered in section 3:
a configuration xz € AZ" is called almost periodic if no nontrivial closed shift
invariant subset in the closure of the orbit of = exists. Almost periodicity
is interesting since it occurs in nature, for example, in quasicrystalline ma-
terials, where the centers of the atoms form almost periodic configurations.
Mathematically, almost periodic initial conditions are a natural alternative
to periodic or random initial conditions.

CA are dynamical systems which evolve a d-dimensional array of letters
a € Ain a finite alphabet A = {0,1,..., N—1} using a translational invariant
rule. More precisely, a CA is a continuous map ¢ on the compact space X =
AZ" which commutes with all translations z +— (0(2)), = Zp4p with k €
Z?. By the Curtis Hedlund Lyndon theorem, the new state ¢(z), at a grid
point n € Z4 depends only on {2} }rentr, Where F is a finite neighborhood
of n. As for any dynamical system ¢, one is interested in invariant sets
such as attractors or periodic orbits. Such invariant sets are crucial for
understanding the long term behavior of the dynamics and especially the
behavior of averaged quantities over time. Since ¢(X) C X, also ¢"(X) C
¢"(X) and the attractor K = N,en ¢™(X) is a compact set on which all
invariant measures of ¢ have their support. K decomposes in general to
smaller closed invariant sets. The minimal invariant subsets are by definition
almost periodic and sometimes, we expect a minimal set that can be given
by a Sturmean configuration which can be stored with a small amount of
data. At a fixed time such a configuration is represented as a union of half
open intervals J = U2, [a;, b;). Associated with each interval J; = [a;, b;) is
a value f(.J;) € A. For § € R™, a Sturmean configuration is given by

Ty, = Zf(]i)lji(€+n~ozmod 1),

where o = (ay, @, ..., ay) Is a vector of d rotation numbers, 6 is a parameter,
and n = (ny,...,ng) € Z% is the location of a cell in the lattice Z¢. Here
0 — 14(0) is the characteristic function of a set H, which is 1 for § € H and
0 for 6 ¢ H. Periodicity can be established by taking rational numbers «;. Tt
can be seen in a constructive way that the CA rule ¢ applies to the interval
data J. The translation back to the lattice J — x is only necessary when
inspecting part of the phase space. Note also that with a nondeterministic
rule there is still an evolution on the set of intervals.

An interesting quantity is the growth rate of the number |¢"(J)| of in-
tervals. It is a measure for the memory needed to store a configuration.
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Of course, if the numbers «; are all rational, then there is an upper bound
for the number of intervals. If one rotation number «; is irrational, the
number of intervals will in general grow indefinitely. How fast can it grow?
Let F(¢) C Z? be the influence region of ¢ and assume [0,1) = Up_' Ji,
where each .J;, is a finite union of half open intervals J, = Z?ﬁl[aﬂw bjk) with
ajx < bjx. An interval configuration J consists of |J| := Y7 ' n; half open
intervals. We claim that the number of intervals |¢™(J)| has a polynomial
upper bound |¢"(J)| < [F(¢™)|-|J]. To prove this it is enough to show
the claim for n = 1 and then replace ¢ by ¢". If B = {ay,...,q;s} with
0<a <az-- <ay <1is the set of boundary points of the partition J,
then the set of boundary points of the new partition ¢(.J) is contained in
the set B + F' - @ which contains not more than |F(¢)| - |B| = |F(¢)| - |J]|
elements. If ¢ has radius r, then ¢ has a radius < nr and |F| < (2r + 1)<
We can therefore define a growth rate of complexity
A(J) := limsup log|¢"(J)| .
nsoo  log(n)

It satisfies A\(J) < d because |F(¢")] < (2nr + 1)%. The actual growth
rate can of course be smaller. See [4] for examples where J = ¢"(.J) and
A(J) = 0. From all of the numerical experiments that we have performed,
it is reasonable to believe that the limit actually exists. Of course, if «; are
all rational then A(J) = 0. In this case, the complexity bound shows that
evolving intervals is as efficient as evolving CA traditionally. It is in general
better, because evolving the intervals performs the CA computations in a
compressed way. From the information point of view we should look at the
number of intervals as a measure of complexity because it is an upper bound
for the Chaitin complexity of the configuration. If A(J) > 0 the dynamics
are not recurrent even though they are reversible.

The number A seems not to be related to the entropy defined in [9] be-
cause looking at the CA dynamics on a thin subset of almost periodic con-
figurations changes the dynamical properties considerably. For example, the
one-dimensional shift on {0, 1|/}% has entropy log(2), while in the almost pe-
riodic setup A(J) = 0 for every J because ¢(.J) = (J + a)mod 1 implies that
the number of intervals does not change. Let us look at the deterministic and
reversible lattice gas automaton HPP [2, 3], where up to four particles can be
at a cell moving along one of the basis vectors 4e;, £es. During an iteration
step, a particle is advanced one cell in the direction of its velocity. When
two particles collide with opposite velocity, both particles are scattered by a
rotation of 90 degrees. This rule preserves the particle number, the total mo-
mentum, and the total energy, quantities that are also defined for aperiodic
almost periodic situations. Note that the automaton is reversible because
¢ has an inverse which is obtained by evolving the particle configuration,
where the directions of the particles are reversed. The theoretical bound
gives |¢"(J)| < |J|- (2n+ 1) and X < 2. Experiments with almost periodic
lattice gas automata were done in [4, 11]. We measured values A(J) = 1.95
for the HPP model. The value A(J) seems to be quite independent of the
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initial condition J. If A > 0, the dynamics are not recurrent even though
the system is reversible. We observe a weak convergence of the measures
2 F (6 (J)e)=a 14n(7);dr to a multiple of the Lebesgue measure. This uniform
mixing of intervals is expected to hold whenever A(J) > 0 and indicate that
the system does approach equilibrium, a fact which is expected to happen
for some CA used in fluid dynamics [15].

3. Almost periodic particle dynamics in the Vlasov limit

In this section almost periodicity appears in a different way, particles no
longer move on a discrete grid as before but as a gas in R? in the Vlasov
limit (see [5, 13]). We prove here an existence result in the almost periodic
context. Vlasov dynamics are used especially in stellar dynamics and plasma
physics.

A finite dimensional system of particles moving on a manifold N = R
under a pairwise interaction given by a potential V' evolve according to the
Newton equations fJ =g;, g; = —n"t Y, VV(f; — f;) which are the Hamil-
ton equations with Hamiltonian H(f,g) = >}_, g?-/? + 2 V(i — f;). We
assume that the potential V' is smooth and that the solutions exist for all
times. If the force is rescaled in the limit n — oo so that it stays finite,
then the dynamics can be extended from point particles to a “particle gas”
with an arbitrary density m in the phase space S = R??. One evolves then
amap X = (f,9) : S — S, where (f;, g:) gives the position and momentum
of the particle with initial condition (fy, go). The corresponding mean-field
characteristic equations

f=9.9== [ V() = fw) dmln)

are the Hamilton equation for the Hamiltonian

2
a(t.0) = [P )+ [ V)~ 1) dmiw)dm(n).
s 2 S5xS

This is an ordinary differential equation (ODE) in an affine linear space of
all continuous functions (f,g)(w) = w + (F,G) with supremum norm for
F G € C(S,5). By the Cauchy-Piccard existence theorem for ODEs in
Banach spaces and a Gronwall estimate, there is a unique global solution if
the gradient VV is smooth and bounded. The density P; = (f:, g:)«m de-
fined by [ h(z,y) dP(z,y) = [ h(f(w),g(w)) dm(w) satisfies then the Vlasov
equation

Pz, y)+y-V.P(z,y) — US V. V(x —a")Py(a',y') da'dy'| -V, Pi(z,y) = 0.

This method of characteristics [1] is a convenient way to prove the existence
and uniqueness of the solution of this integro PDE.

We now extend this setup. How general can the initial density m = P, be?
It can be a finite measure or a signed measure representing charged particles
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with different charges. One restriction is that — [, VV(f(w) — f(n)) dm(n)
should be finite. Only if VV decays sufficiently fast at infinity can one allow
spatial infinite measures like the product of the Lebesgue measure on N = R4
with a compactly supported measure. For periodic V' and when the position
space N is the torus T¢, one deals with particles in a box with periodic
boundary conditions. Integration over T gives a finite force. We generalize
this now to the almost periodic case, where we evolve a gas on R¢ for which
all physical quantities are almost periodic in the position.

We assume that the initial density m(z,y) = Py(z,y) on the phase space
S = T*N has the property that for any continuous function h on R?, the
function L"(z) = [ga h(y)m(z,y)dy is a Bohr almost periodic function on
N and that there exists a constant r such that m(z,y) = 0 for |y| > r. To
define a Vlasov evolution for such measures, we proceed in a similar way as
before. Define (f, g)(z,y) = (x+F(z,y),y+G(z,y)), where F,G : S — S are
continuous with the property that they are Bohr almost periodic functions
in & when y is fixed. Such functions form a closed subspace of C(S,S) on
which a finite mean

MI[F] = lim (Qn)fd/ F(z,y) m(z,y)dzdy
[-nmn] xR

n—o00

is defined. Especially, when m is 1-periodic in x, one has

MIF) = /rand F(z,y)m(z,y) dedy.

An evolution can now be defined with the Hamilton equations

F(z,y) = G(z,y), Gl,y) = —M[VV(f(z,y) = f()] = Z(F)(x,y)
with initial conditions (Fy, Go) = (0,0). The Hamiltonian is H(F,G) =
M[G(w)?/2] + M[M[V(f(w) — f(n))]]. Because V., V(f(z,y) — f(a',y/)) is
both almost periodic in z and x', we know that (F, G) = (G(z,y), Z(F)(z,y))
is almost periodic in . The map F — Z(F') is differentiable so that by the
Cauchy—Piccard existence theorem, there is a solution in the Banach algebra
of almost periodic functions for small times. A Gronwall estimate assures
global existence of the solution if the gradient VV satisfies a global Lipshitz
estimate. The corresponding Vlasov equation defines the evolution of spa-
tial almost periodic measures P, = (f;, g;)* Py, where Py = m is the initial
measure. For any h : R? — R, the function L!(z) = Jga h(y)P,(z,y) dy
on N is almost periodic. Examples are the physically relevant moments
Li(x) = [ga [Ty P, y) dy.

The Fourier transform of the almost periodic function L (x) is a discrete
measure L"(A) on N = R?%. One writes

Lz) = > LM\ exp(iX - z).
A, M[L} exp(—iX-z)]#0

The measure ﬁf is supported on the frequency module of the initial measure
m = P,. This generalizes the fact that if Py(x,y) is periodic in z, then
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P;(z,y) is also periodic with the same period. While the frequency module
does not change under the evolution, the weights on the spectrum change
and are expected to shift towards higher and higher frequencies.

As in the case of almost periodic CA, there are macroscopic quantities
which are invariant under the Vlasov flow. Examples are the energy H|[f, g],
the momentum M{[g], or the angular momentum M|[f A g].

We can also find almost periodic Bernstein—Green—Kruskal modes [10],
which are spatial almost periodic equilibrium measures for the actual Vlasov
PDE. These well known solutions are obtained with the separation ansatz

2

Ple.y) = Cexp(=B(% +V +Q(2)) = SH)Q(a).
where

V% Q(z) = lim (2n) /[ LVl —a)Q() da
One gets an equilibrium measure if @ solves the integral equation @ =
exp(—BV * Q(z)). With Q@ = exp R, one can find an almost periodic po-
tential V satisfying V()\) = R(\)/exp R()) such that P(z,y) = S(y)Q(z) is
an equilibrium solution.
We define the Lyapunov exponent

Mw) = limsupt~tlog || DX, (w)]| € [0, ]
t—o0

Because

GPY- 4 ( D ) - ( _MIDV(i) - F)] 0 ) ( Foh )
— A(f,)DX,

this is the Lyapunov exponent of the finite dimensional cocycle A(f, g) over
the flow X; = (f;, ¢¢). If D?V is globally bounded, then A\(w) < co. One can
readily check that if the measure m is a finite Dirac measure representing n
particles, then this Lyapunov exponent is the classic Lyapunov exponent of
a test particle forming together with the n particles a restricted (n+1)-body
problem.

The dynamical entropy A = limsup,_, ¢t~ M[log||DX(w)||] € [0, 0] is
defined because w +— ||[DX;(w)|| is spatial almost periodic for any ¢. The
number A is a measure for the growth rate of complexity of the almost peri-
odic fluid. If A > 0, the almost periodic Dirichlet integral M{||DX,||?] grows
exponentially and the characteristic flow X; is not recurrent even though the
dynamics are reversible. If A(w) > 0 for almost all w, one expects that P, can
converge in a weak sense to an equilibrium solution of the Vlasov equations.
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