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A subset of the Walsh functions is identified, its properties are explored,
and algorithms are given that generate the functions. Each function is di-
vided into 2n intervals and is indexed by the integer n. It is shown that the
nth function can be used to generate an nth derivative and the importance
of this is illustrated for solving a class of minimization problems.

1. Introduction

A wide variety of problems exist requiring the identification of the best
binary sequence from a choice of many. For example, consider the
fairest way for “captain A” and “captain B” to choose sides for a pick-
up game of basketball. It is traditional to alternate choices and if eight
other players are available, captain A gets the first, third, fifth, and
seventh choices, while captain B gets the second, fourth, sixth, and
eighth choices. But is this sequence likely to result in the most equitable
distribution of talent? The somewhat surprising answer is no: a closer
game is likely if captain A has the first, fourth, sixth, and seventh choices,
while captain B has the second, third, fifth, and eighth choices.

This inquiry began as an attempt to establish with mathematical rigor
the optimal sequence for a class of problems that this exemplifies. A
second example, called the “coffeepot problem,” is considered in detail
after the mathematics have been developed. But as is typically the case
with fundamental contributions, scientifically significant applications of
this work may not appear for some time.

2. The FCN functions

Consider the set of all functions over the domain (0,1) satisfying the
following conditions.

1. The domain is divided into 2n intervals of equal length, where n is a
nonnegative integer. The intervals are numbered from j ! 0 to j ! 2n " 1.

2. The value of the function over each interval is #1.

3. The value of the function over the first interval is $1.

4. Except for n ! 0, which has only one interval, every function has equal
numbers of intervals valued at $1 and "1.
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Figure 1. The functions FCN(3, i, x). No attempt has been made to establish an
algorithm to assign the 35 values of i uniquely to the 35 graphs.

For n ! 0, there is one function in the set. For all other n there are
2n!/2(2n"1!)2 functions in the set. The value of the ith function on the
jth interval for a given value of n is designated FCN(n, i, j). The value
at point x is FCN(n, i, x). Graphs of the 35 functions FCN(3, i, x) are
shown in Figure 1.

3. The Walsh functions

A subset of the FCN functions was described by Walsh in 1923 [1].
Walsh functions enjoyed a resurgence of popularity in the 1960s as an
alternative to Fourier analysis for decomposing electrical signals [2] and
in the 1980s in the development of the theory of wavelets [3].

The Walsh functions are a closed, mutually orthogonal set in which
each function can take on only two values, #1 [1, 2, 4]. The first 16
Walsh functions are shown in Figure 2. The top two functions have
n ! 0 and 1, respectively. Thereafter, an index k is also required to
specify every Walsh function, according to the definitions [1]:

WAL(n $ 1, 2k " 1, x) ! !WAL(n, k, 2x) 0 & x < 1
2 ,

("1)k$1WAL(n, k, 2x " 1) 1
2 < x & 1

(1)

WAL(n $ 1, 2k, x) ! !WAL(n, k, 2x) 0 & x < 1
2 ,

("1)kWAL(n, k, 2x " 1) 1
2 < x & 1

(2)

with k ! 1, 2, 3, . . . , 2n"1 and n ! 1, 2, 3, . . . .
The ordering in Figure 2 is that originally suggested by Walsh [1].

Called sequency order, the functions are arranged in ascending order of
sign changes, often called zero crossings [2].

The Rademacher functions are obtained by using only equation (2)
instead of incrementing through all allowable values of k. An orthog-
onal function set that is not closed, the Rademacher functions form an
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  0   0   0  0  0

  1   1   8  1  1

  2   3 12  2

  3   2   4  2

  4   6   6

  5   7 14  3

  6   5 10

  7   4   2  3

  8 12   3

  9 13 11

10 15 15  4

11 14   7

12 10   5

13 11 13

14   9   9

15   8   1

S D N R O

0           1/2          1
       x

Figure 2. The first 16 Walsh functions (through n ! 4) with positive phasing.
The number of each function is given in S, sequency order; D, dyadic order; and
N, natural order. The n indices are also shown for the first five Rademacher
functions, R; and DIF functions, O.
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important subset of the Walsh functions [5]. The Rademacher functions
in Figure 2 are the Walsh functions with sequency numbers 0, 1, 3, 7, and
15. The complete set of Walsh functions may be generated as products
of the Rademacher functions with each other, albeit in a different order
called dyadic order [6].

The Walsh functions can also be generated from Hadamard matrices
in what is called natural order [7].

4. The difference functions

We define the difference (DIF) functions by alternating equations (1)
and (2) as n is incremented, using (2) when n is even and (1) when n
is odd. The first five DIF functions (n ! 0, . . . , 4) represented as binary
sequences are illustrated below. The values of the functions may be $1
or "1, abbreviated as $ and ", on the 2n intervals of equal length over
the domain (0, 1):

$
$"
$ " "$
$ " " $ " $ $"
$ " " $ " $ $ " " $ $ " $ " "$

DIF(n, j) is the value of the nth function on the jth interval, where
0 & j < 2n. The DIF functions may be generated recursively from
DIF(0, 0) ! $1 in any of the following ways.

Translation. Draw the nth DIF function by first compressing the
(n " 1)th DIF function into the domain (0, 1/2), then changing the sign
of the (n " 1)th DIF function and compressing that into the domain
(1/2, 1), that is,

DIF(n, j) !
'((()(((
*

DIF(n " 1, j) if 0 & j < 2n"1,

"DIF(n " 1, j " 2n"1) if 2n"1 & j < 2n.

The translation algorithm follows directly from the definition above
and illustrates the origin of the name “difference functions.”

Reflection. Draw the nth DIF function by first compressing the
(n " 1)th DIF function into the domain (0, 1/2) and then reversing the
(n " 1)th DIF function, changing the sign for odd n, and compressing
that into the domain (1/2, 1), that is,

DIF(n, j) ! !DIF(n " 1, j) if 0 & j < 2n"1,
("1)nDIF(n " 1, 2n " j " 1) if 2n"1 & j < 2n.

Reflection provides the easiest way to see why the even-numbered se-
quences are palindromes.
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Division. Replace every interval of $1 in the (n " 1)th DIF function
with intervals of $1 and "1 in the nth DIF function, and replace every
"1 with "1 and $1, that is,

DIF(n, j) !
'((()(((
*

DIF "n " 1, j
2 # if j is even,

"DIF "n " 1, j"1
2 # if j is odd.

The sense intended is that of cell division, not arithmetic division.
Thus, for example, DIF(3, 4) ! "1 may be generated by translation

as "DIF(2, 0), by reflection as "DIF(2, 3), and by division as DIF(2, 2).
The DIF functions resemble the paper folding (PF) sequences charac-

terized by Davis and Knuth in [8]. By analogy with the PF sequences
and as a direct consequence of the division process described above,
the initial sequence DIF(n, 0), DIF(n, 1), DIF(n, 2), . . . is identical to the
subsequence DIF(n, 0), DIF(n, 2), DIF(n, 4), . . . and is the negative of
the subsequence DIF(n, 1), DIF(n, 3), DIF(n, 5), . . . . Following Oknin-
ski, this property is referred to as self-similarity [9]. Thus it may be
possible to develop algorithms to generate fractal patterns.

5. Relationships

There are a number of interesting connections among the DIF, Rade-
macher, and Walsh functions.

For n ! 0 there is one DIF function, and it is a Walsh function.
Each subsequent n supplies 2n"1 additional Walsh functions. The Walsh
functions through sequency number 2n form a subset of FCN(n, i, j).

For each n there is one Rademacher function, forming a subset of the
Walsh functions.

Represented as step functions, the first five DIF functions are the
Walsh functions in Figure 2 with sequency numbers 0, 1, 2, 5, and 10.
For each n, there is one DIF function, forming a subset of the Walsh
functions.

When numbered in dyadic or natural order, the Walsh functions
that are Rademacher functions are 0, 1, 2, 4, 8, . . . . Expressed in binary
notation, m ! $+i!0 mi2

i, these are 0000, 0001, 0010, 0100, 1000, . . .,
that is, all m such that at most one mi ! 1.

When numbered in dyadic order, the Walsh functions that are DIF
functions are 0, 1, 3, 7, 15, . . .; or, in binary notation, 0000, 0001, 0011,
0111, 1111, . . .; that is, all m such that if mk ! 1, then mi ! 1 for all
i < k.

When numbered in natural order, the Walsh functions that are DIF
functions are 0, 8, 12, 14, and 15 for n ! 4; or in binary notation, 0000,
1000, 1100, 1110, and 1111; or in general, all m such that if mk ! 1,
then mi ! 1 for all i > k.
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The complete set of Walsh functions may be generated as products
of the DIF functions with one another, in analogy with the Rademacher
functions.

The Rademacher functions are obtained from the DIF functions from
the expression RAD(n, x) ! DIF(n, x)DIF(n"1, x), where the second in-
dex of each function is now the point x in the domain (0, 1) where each
function is to be evaluated. The Walsh sequency numbers corresponding
to these functions are additive, but the Walsh dyadic and natural num-
bers are subtracted. For example, the function numbers corresponding
to RAD(4, x) ! DIF(4, x)DIF(3, x) are sequency, 15 ! 10 $ 5; dyadic,
8 ! 15 " 7; and natural, 1 ! 15 " 14.

The DIF functions may be generated from the Rademacher functions
from the rather simple relationship, DIF(n, x) ! ,

n
i!0 RAD(i, x). For

example, the n ! 4 DIF function in Figure 2 is seen to be the product of
the n ! 0, . . . , 4 Rademacher functions.

Rademacher functions form a graphical basis for determining the
binary digits of an integer [2], so this relationship inspires a fourth
algorithm to generate the DIF functions by bits.

Express j as a binary number, j ! $+i!0 ji2
i. It follows from previous

definitions that n is, at minimum, the number of binary digits required
to express j. Add the binary digits $n"1

i!0 ji, if this result is odd, then
DIF(n, j) ! "1; if even, then DIF(n, j) ! $1; that is,

DIF(n, j) ! ("1)$n"1
i!0 ji if 0 & j < 2n.

This is illustrated in Figure 3.
Thus, for example, DIF(3, 4) ! "1 may be generated by expressing 4

as 1002, the sum of whose bits is 1.
This is the most elegant of the expressions for the DIF functions. It

is the only one that is not iterative, and it shows most clearly that the
values of j that exist are independent of n.

It is easy to see the equivalence of the j values generated by bits and
by division. Halving an even binary number removes the zero from the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

even odd odd even odd even even odd odd even even odd even odd odd even

Figure 3. Illustration of the generation of the DIF sequences by bits. j values
are expressed in base 10 on the first line and in base 2 on the second line. The
number of ones in the base 2 representation is shown on the third line, and that
number’s divisibility by 2 is shown on the fourth line. The pattern in the words
even and odd is that of the DIF sequences.
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ones place and moves the remaining digits one place to the right, so the
resulting binary number has the same number of ones. Subtracting one
from an odd binary number reduces by one the number of ones, then
halving the result gives no further change in the number of ones.

6. Difference becomes differential

The first derivative of f (x) with respect to x is defined as [10]:

f (1)(x) ! lim
h-0

f (x $ h) " f (x)
h

.

The second derivative would be

f (2)(x) ! lim
k-0

lim
h-0

f (x$h$k)"f (x$k)
h " f (x$h)"f (x)

h

k
.

Typically, one sets k ! h [11], but if instead we let k ! 2h, this simplifies
to

f (2)(x) ! lim
h-0

f (x $ 3h) " f (x $ 2h) " f (x $ h) $ f (x)
2h2 .

Similarly, we can define the third derivative as

f (3)(x) !

lim
h-0

f (x $ 7h) " f (x $ 6h) " f (x $ 5h) $ f (x $ 4h) " f (x $ 3h)
$ f (x $ 2h) $ f (x $ h) " f (x)

8h3 .

We recognize the pattern of DIF(1, j) in the numerator of f (1)(x), DIF(2, j)
in f (2)(x), and DIF(3, j) in f (3)(x). Indeed, this method of generating
higher order derivatives is analogous to generating higher order DIF
functions by division. Hence, we generalize:

f (n)(x) ! ("1)n

.//////////0

n"1%
i!0

2"i

122222222223
lim
h-0

.//////////0

$2n"1
j!0 DIF(n, j)f (x $ jh)

hn

122222222223
.

Due to the ease of generating the DIF functions from binary numbers,
this could lead to more efficient algorithms for the numerical computa-
tion of nth derivatives.

When f (x) is a polynomial of order n or less, pn(x), the limit is
independent of h, so it is unnecessary to take the limit. Then

p(n)
n (x) ! ("1)n

.//////////0

n"1%
i!0

2"i

122222222223

.//////////0

$2n"1
j!0 DIF(n, j)pn(x $ jh)

hn

122222222223
.

When f (x) is a polynomial of order n " 1 or less, p(n)
n"1(x) ! 0, so

2n"1&
j!0

DIF(n, j)pn"1(x $ jh) ! 0.
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Figure 4. Graphical illustration that ' 1

0 x2DIF(3, x) dx ! 0.

Since this is true for any x along an interval, it is true for the sum of
all x along that interval. Hence,

( 1

0
p(n)

n"1(x) dx ! ( 1

0
DIF(n, x)pn"1(x) dx ! 0.

In other words, the nth order DIF function is orthogonal to polyno-
mials of order n " 1. This is illustrated in Figure 4.

7. The coffeepot problem

The final result of the previous section has an interesting application.
There is a flavor concentration gradient in a carafe of coffee: less and
less flavor is available for extraction from the coffee grounds as the
brewing process progresses, so the coffee is stronger at the bottom of
the carafe than at the top. Swirling produces horizontal rather than
vertical convection, so it does not eliminate the concentration gradient.
In pouring two cups of coffee of equal volume from this carafe, how can
one pour the coffee to most nearly equalize the solute concentrations in
the two cups?

Let c be the concentration of interest and x be the height from the
bottom of a cylindrical carafe, in units such that the range of x is from 0
to 1. It is likely that the concentration function c satisfies the conditions
c(x) > 0, c4(x) < 0, and c44(x) > 0 over the entire interval [0, 1] as
shown in Figure 5 (but the solution outlined below does not depend on
this assumption). Examples of functions satisfying these conditions are
c 5 e"ax, c 5 1/(a $ x), and c 5 1/(a $ x)2.

Let us apportion the coffee from the carafe equally into two cups,
A and B, and let the notation AB designate a binary sequence of two
pours, the top half of the carafe into cup A, then the bottom half into
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Figure 5. Graphical representation of the likely form of the concentration gra-
dient as a function of height.

cup B. If one has the patience to make four pours of equal volume,
the possible pouring sequences are AABB, ABBA, and ABAB. The
objective is to make the difference in the two concentrations as close
as possible to zero. Subtracting the concentration in cup B from the
concentration in cup A is equivalent to multiplying the concentration of
cup B by "1 and adding the two. Representing the sequences as step
functions, they correspond to the FCN functions with n ! 2. The best
pouring sequence is obtained by minimizing the absolute value of the
integral of the product of the concentration function times the sequence
step function (Figure 6). That is, the concentration difference between
cups A and B is minimized by using the step function FCN(2, i, x) that
minimizes

)))))' 1
0 FCN(2, i, x)c(x) dx

))))) over all i. The sequence that best
minimizes the difference is ABBA, which is DIF(2, j), whenever c(x) is
monotonic, a condition one would normally expect.

If one wishes to further reduce the difference and has more patience,
one can make eight pours of equal volume, four in each cup. The num-
ber of possible sequences is now 35, as represented in Figure 1. One can
write a simple computer program to identify, for a given concentration
function c(x), the step function that minimizes

)))))' 1
0 FCN(3, i, x)c(x) dx

))))).
A Microsoft Excel macro written for this purpose systematically eval-
uates the integral for each sequence. The process is then repeated as a
varies incrementally. The optimal sequence depends on the choice of
c(x), but it is ABBABAAB, or DIF(3, j), for c ! e"ax whenever a & 1.5,
for c ! 1/(a $ x) when a 6 1.3, and for c ! 1/(a $ x)2 when a 6 3.

With even more patience, one may make 16 pours, eight into each
cup. There are now 6435 possible pouring sequences. Different se-
quences minimize

)))))' 1
0 FCN(4, i, x)c(x) dx

))))) for different functions c(x),
but ABBABAABBAABABBA, or DIF(4, j), has the lowest value for
c ! e"ax when a & 0.6, and for c ! 1/(a $ x) when a 6 5, and for
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Figure 6. ' 1
0 DIF(2, x)c(x) dx, that is, the step function FCN(2, i, x) that mini-

mizes
)))))' 1

0
FCN(2, i, x)c(x) dx

))))).
c ! 1/(a $ x)2 when a 6 8. We see that the conditions for a become
more stringent as n increases, having the effect of flattening the graphs
of c as a function of x. Nonetheless, it seems significant that the dif-
ference sequence works best over a range of conditions when so many
other options are available.

Why do these solutions work for all three forms of the concentration
function? And why do they work only under certain conditions?

Consider the Taylor series for each of these three functions:

e"ax !
+&

n!0

("ax)n

n!

1
a $ x

!
1
a

+&
n!0

*"x
a
+n

1
(a $ x)2 !

1
a

+&
n!1

n *"x
a
+n"1

.

When c(x) ! e"ax, as positive values of a approach zero, the higher
order terms in the polynomial expansion decrease in proportion to an.
When c(x) ! 1/(a $ x) or c(x) ! 1/(a $ x)2, increasing values of a make
the higher order terms decrease as a"n"1 and a"n, respectively. Since
DIF(3, x) is already orthogonal to all polynomial terms through x2,
the integral of the product becomes smaller as terms in x3 and above
decrease more rapidly. Similarly, DIF(4, x) is already orthogonal to all
polynomial terms through x3, so the integral of the product is minimized
when terms in x4 and above decrease rapidly.
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This result may be applicable to more important problems. For
example, it is often difficult to distribute pigment uniformly through
paint. These functions could be applied to such situations, where ho-
mogenization of inhomogeneous mixtures is difficult [12]. It is likely
that uniformity from one sample to the next can best be achieved by
distribution following the pattern of the DIF functions.

8. Conclusion

The difference (DIF) functions form a mutually orthogonal set that can
be used to generate the Walsh and Rademacher functions. The difference
sequences are easily generated by several algorithms, emerging as a
fundamental property of binary numbers. A simple expression for the
nth derivative of a function can be derived in terms of the nth sequence.
As a consequence, the nth function is orthogonal to polynomials of
order n " 1. Because of this property, these sequences form solutions to
a class of minimization problems.
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