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This paper investigates some series of integers which are derived from a
recursively defined sequence of permutations of words. Such a recursion
can be interpreted as a dynamic system. Geometrical representations of
these series appear to be self-similar, symmetrical, and factorizable. The
paper also shows how some bidimensional images may be decomposed
into images corresponding to permutations of fewer symbols.

1. Introduction

Any positive integer can be represented by a digit sequence in base b,
and so it gives a permutation of the corresponding multiset. Depending
on how many zeroes to the left of the first significant digit are used,
you get a different multiset. Starting with a fixed multiset containing
digits, one gets a list of numbers corresponding to its permutations. We
investigate the dynamics of the permutation numbers corresponding to a
successor operation on the permutations. We also introduce geometrical
representations for some series of permutation numbers and show some
of their properties.

The paper is structured as follows. In section 2 a formal model
is introduced. Section 3 discusses some simple series of permutation
numbers and their geometrical representations. Section 4 discusses other
series that produce multidimensional geometrical representations and
draws some observations on their structure. Conclusions are reported
in section 5.

2. Formal model

In this section we introduce a formal model and a function. We show
that the function is a successor for the lexicographically ordered gener-
ation of the permutations of a multiset.

Definition 1. Let us consider a set of symbols, !a1, . . . , am", with a1 <
. . . < am. Let M # !a1, . . . , a1!""""""""#""""""""$

c1

, . . . , am, . . . , am!"""""""""#"""""""""$
cm

" # !a1
c1 , . . . , am

cm " be a

multiset of n # !m
i#1 ci elements, with $i % !1, . . . , m" & ci > 0. Any

arrangements of the elements of M into a row is a permutation of M
and is denoted as pM (or, where M is implicit, as p).
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Element k in permutation p is denoted as p[k]. Arrangements are
obtained through the “(” operator, concatenating symbols into “words”

(strings of symbols). Let ac be an abbreviated form for
c times
%&&&&&&&&&&&&'&&&&&&&&&&&&(
a ( a)a.

Definition 2. Given any two permutations p1 and p2 of the same mul-
tiset M, we say that p1 precedes p2 (denoted as p1 ! p2) if and only if
)k % !1, . . . , n" & ($j < k & p1[j] # p2[j]) " (p1[k] < p2[k]).

Definition 3. The set of all different permutations of M is denoted as
!M (or simply ! when M can be omitted with no risk of ambiguity).

Clearly !M is linearly ordered by the “!” relation. Note also that

*!M* # # n
c1, . . . , cm$, that is, the multinomial coefficient of n over the ci.

Definition 4. The following permutation of M:

a1 . . . a1!""""""#""""""$
c1

a2 . . .a2!""""""#""""""$
c2

) am . . . am!"""""""#"""""""$
cm

# a
c1
1 ( a

c2
2)acm

m

is called the zero permutation of M, or briefly its zero, and is denoted
as pM

0 , or simply p0.

Definition 5. The following permutation of M:

am . . . am!"""""""#"""""""$
cm

am+1 . . . am+1!"""""""""""#"""""""""""$
cm+1

) a1 . . . a1!""""""#""""""$
c1

#acm
m ( a

cm+1
m+1)a

c1
1

is the end permutation of M and is denoted as pM
, , or simply p,.

Lemma 1 defines a Turing machine that finds out which subset of any
input permutation should be shuffled in order to produce the “next”
permutation in (!M,!).

Lemma 1. Let pM % !M and a % M. If pM - pM
, then there exist two

disjoint subsets of M, say L and R, such that:

1. pM # pLa pR
,,

2. a < max!b * b % R",

3. R - ..

Proof. Let us represent pM, left-to-right, on the tape of a Turing ma-
chine [1], with the head on the rightmost symbol of pM. Then let us
instruct the machine to scan the permutation right-to-left, halting at the
first couple of contiguous symbols which is not an inversion, or at the
left of its leftmost character. (An inversion is any couple of contiguous
characters xy such that x < y.) At the end of processing time the head
of the machine may be in one of the following two states.
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Moved one position leftward. In this case, take R as the singleton con-
sisting of the rightmost character in pM (say z), ai as the symbol to its left,
and L # !M!a, z" (i.e., the complementary set of !a, z" with respect to M).

Moved somewhere else within the permutation, that is, the head’s total
number of shifts were more than one and less than n. In this case, let
a be the symbol upon which the head stands; then let L and R be made
of the elements represented by the two substrings respectively on the left
and right of a. (Note that L may also be empty.)

The head should not be found on the left of the leftmost character of
the permutation, because this would mean that no inversion had been
found. In this case pM would equal pM

, , contradicting the hypothesis.

Definition 6. From Lemma 1, if p % !M, p - pM
, , then p can be de-

composed into the form pLa pR
, such that )b % R & a < b. Now let

c # min!b % R * a < b" and consider the set R # !a" / !R!c". Then let the
following permutation of p:

p0#pLc pR
0

be called the successor (or, the next) permutation for p. If p # p,, let
p0#p,.

Note that if p - p,, then pL is the invariant part of p with respect to
the successor operator.

Definition 7. The following function:

succ & ! 1 !,

such that $p % ! & succ(p) # p0, is called the successor function.

Definition 8. Let us define the powers of succ as follows:

$p % ! & % succ0(p) # p
succx(p) # succ(succx+1(p)) if x > 0.

Note that, given any permutation, zero or not, it is possible to re-
cursively apply the successor operator on it, up to the end permutation.
All strings obtained are different arrangements of the characters of the
original string, that is, they are a subset (possibly an improper one) of its
permutations. Such permutations can now be regarded as consecutive
orbits of the successor operator on the original string.

Theorem 1 shows that the function succ is indeed a successor and, as
such, it generates each and every permutation of M.1

1It is worth remarking the similarities between our definitions and those of Peano’s
axioms for arithmetics [2], based on the concepts of zero, number, and successor. A nice
alternative way to refer to the permutation numbers could indeed be “Peano numbers”—
after the words permutation, anagram, and orbits.
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Theorem 1. For any multiset M, the number of different permutations
that can be observed, starting from p0 and recursively applying the
successor operator up to the end permutation, is equal to

*!M* # # n
c1, c2, . . . , cn$ . (1)

The proof, by induction on n, is omitted for the sake of brevity. One
may refer, for example, to [3–7] for classical formulations of the same
function.2

Definition 9. Let us consider a multiset M and its zero permutation p0.
Let us call the function ord & ! 1 N the order of a permutation such
that % ord(p0) # 0

ord(p) # z iff p - p0 and p # succz(p0).

Definition 10. Let p be a permutation of M. Let us call the digit function
of p the function dp & !1, 2, . . . , n" 1 !0, 1, . . . , m+1", defined as follows:

dp(i) # j iff p[i] # aj.

Definition 11. Let N represent the set of integer numbers. The function
Ν & !M 1 N, such that

$p & Ν(p) #
n&

k#1

dp(k) 3 mn+k,

is called the numbering function for M. Ν(p) is called the number of
permutation p.

3. Permutation numbers and their representations

Various series can be derived starting from the successor function succ
and its orbits. Three of those series and their representations are the
subject of this section.

3.1 Permutation numbers

Let us consider the following series:

eM # 'Ν(pM)(pM#succi(p0), i>0 .

Series eM, or e for short, is the series of the permutation numbers, that
is, the monotonically increasing series of integer numbers that one can
compose using a fixed digit distribution.

2As the reader may have noticed already, the focus here is not on the generating
algorithm but on its reformulation as a complex system.
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Figure 1. E(0012344). Note the symmetry.

A straightforward representation for e is given by plotting couples'ord(pM), Ν(pM)( for each valid pM % !M. Let us call E(pM
0 ) the graph of

e for multiset M.
Figures 1 through 4 represent e for various values of M. In general

one may observe that graphs of multisets whose symbol distribution
depicts some regularity are symmetrical, while “irregular” graphs, in
some cases, may reveal self-similarities.

3.2 Series d and r

Definition 12. Let us define the function ∆M & M 1 N such that

$p - p, & ∆M(p) # Ν(p0) + Ν(p).

The function ∆, measuring the distance between the number of permu-
tation p0 from that of permutation p, is called the distance function.

Let us call d the following series:

d # D e # '∆M(pM)(pM#succi(p0), i>0

Note how ∆ specifies the number to be added to the number of the
current permutation in order to produce the number of the next permu-
tation.

Figure 5 shows two graphs for the couples 'ord(pM), ∆M(pM)( for each
p % !M, when M is !0, 1, 2, 3, 4" and !0, 1, 2, 3, 4, 5". Let us call such

Complex Systems, 15 (2004) 97–120
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Figure 2. E(011234). The top-right part has been magnified in order to show
the self-similarity of the graph.

Complex Systems, 15 (2004) 97–120
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Figure 3. E(011111234).

Figure 4. E(01233333344).

Complex Systems, 15 (2004) 97–120
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M # !0, 1, 2, 3, 4" M # !0, 1, 2, 3, 4, 5"

Figure 5. Graphs of ∆(p) # Ν(p0) + Ν(p) for p # p0 to p, when M is !0, 1, 2, 3, 4"
and !0, 1, 2, 3, 4, 5". Note the symmetry and self-similarity.

Figure 6. D(01234567).

graphs D(pM
0 ). Figures 6 through 11 show other examples. It is also

possible to observe symmetry and self-similarity in this case.

Definition 13. Let us define the function "M & M 1 N, such that

$p - p,, p # pLa pR
, & "M(p) # *R*.

As described in Lemma 1 and Definition 6, any p % ! may be decom-
posed into a left-hand part, remain untouched by the succ operator,

Complex Systems, 15 (2004) 97–120
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Figure 7. D(0011223344) and log D(0011223344).

and a right-hand part (called R in Lemma 1), which on the contrary is
affected by succ. The function " returns the cardinality of R.

Definition 14. Let us call r the following series:

r # '"M(pM)(pM#succi(p0), i>0

A representation for r is given by plotting couples 'ord(pM), "M(pM)(
for each valid pM % !M. Table 1 shows histograms of r in four simple
cases.

Let us call R(pM
0 ) the graph of r for multiset M. Observing those

graphs, one may note how r verifies the following properties.

1. When M consists of only two classes of symbols, c1 and c2, the corre-
sponding graphs for R(a1

j (a2
k) and R(a1

k (a2
j) are “specular twins”—just

like Tweedledee and Tweedledum in Carroll’s Through the Looking Glass.

2. When the distribution of classes is symmetrical, so it is for the corre-
sponding graphs.

3. Graphs are factorizable according to the following decomposition rule:

R(a1
c1 ( a2

c2)am
cm ) 1

R(a1
c1+1 ( a2

c2)am
cm ), R(a1

c1 ( a2
c2+1)am

cm ), . . . , R(a1
c1 ( a2

c2)am
cm+1).

Note that when M consists of two classes of symbols the decompo-
sition rule produces a binary tree whose coefficients constitute a Pascal
triangle. Hence, it is possible to make use of powers of polynomials to
represent decomposition schemes. For instance, here is the decomposi-
tion rule for permutations with just two classes, let us call them a and
b. Let x # min!i, j". Then

R(ai ( bj) 5 R(ai ( bj 3 (a 6 b)0)
1 R(ai+1 ( bj+1 3 (a 6 b)) 1) 1 R(ai+x ( bj+x 3 (a 6 b)x),

Complex Systems, 15 (2004) 97–120
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Figure 8. Graphs of ∆ when M # !230, 231, 232" and !330, 331, 332". This
case also shows symmetry and self-similarity.
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M # !3 3 0, 6 3 1" M # !3 3 0, 7 3 1" M # !3 3 0, 8 3 1"

M # !3 3 0, 9 3 1" M # !3 3 0, 12 3 1"

Left picture: M # !3 3 0, 15 3 1". Right picture: logarithmic scale.

Figure 9. A fixed number of zero digits and an increasing number of one digits.
No symmetry is evident in this case. All pictures portray a self-similar decaying
oscillation pattern.

where the products are between schemes of permutation and powers of
binomials and produce the schemes of the permutations of the decom-
positions.

Figure 12 shows the factorizations applied to the permutations of
M # !0313".

When there are three classes of symbols, say a, b, and c, the corre-
sponding rule is: $x 7 min!i, j, k",

aibjck 5 aibjck 3 (bc 6 ac 6 ab)0 1 ai+1bj+1ck+1 3 (bc 6 ac 6 ab)
1) 1 ai+xbj+xck+x 3 (bc 6 ac 6 ab)x.

Complex Systems, 15 (2004) 97–120
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Figure 10. log D(03132).
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!
!!

aibj

ai+1bj aibj+1

ai+2bj 2ai+1bj+1 aibj+2

ai+3bj 3ai+2bj+1 3ai+1bj+2 aibj+3

Figure 11. Decomposition of aibj, i > 4, j > 4.

In general, the decomposition rule for permutations of symbols be-
longing to m classes appears to be, $x 7 min!c1, c2, . . . , cm":

p #
m)

i#1

a
ci
i # a

c1
1 a

c2
2 . . .acm

m # a
c1+x
1 a

c2+x
2 . . . acm+x

m 3
899999
:

m&
r#1

)
s-r

as

;<<<<<
=

x

.
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perm perm
001111 *********************** 000011 ***********
010111 ***************** 000101 *****
011011 *********** 000110 *****************
011101 ***** 001001 *****
011110 ***************************** 001010 ***********
100111 ***************** 001100 ***********************
101011 *********** 010001 *****
101101 ***** 010010 ***********
101110 *********************** 010100 *****************
110011 *********** 011000 *****************************
110101 ***** 100001 *****
110110 ***************** 100010 ***********
111001 ***** 100100 *****************
111010 *********** 101000 ***********************
111100 110000
perm perm
000111 ***************** 01112 ******
001011 *********** 01121 **************
001101 ***** 01211 *********************
001110 *********************** 02111 *****************************
010011 *********** 10112 ******
010101 ***** 10121 **************
010110 ***************** 10211 *********************
011001 ***** 11012 ******
011010 *********** 11021 **************
011100 ***************************** 11102 ******
100011 *********** 11120 **************
100101 ***** 11201 ******
100110 ***************** 11210 *********************
101001 ***** 12011 **************
101010 *********** 12101 ******
101100 *********************** 12110 *****************************
110001 ***** 20111 *********************
110010 *********** 21011 **************
110100 ***************** 21101 ******
111000 21110

Table 1. Here r is portrayed as histograms in order to facilitate some observa-
tions: Note how R(aj (bk) and R(ak (bj) are specular; how R(aj ( j) is symmetrical;
how it is possible to “factorize” R(aj(bk) into R(aj+1(bk), R(aj(bk+1) and R(ai(bj(ck)
into R(ai+1 ( bj ( ck), R(ai ( bj+1 ( ck), R(ai ( bj ( ck+1).

Figure 12. Factorizations of M # !0313".

Complex Systems, 15 (2004) 97–120
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Figure 13. HeartQuake numbers for M # !04, 12" and two equal-sized blocks
(b # 2).

4. HeartQuake numbers

In the rest of the paper the focus is on another series of numbers obtained
by splitting the multiset into blocks and computing the permutation
number of those blocks.

Definition 15. For each multiset M let us consider a partition of M into
b blocks, b > 1, M1, . . . , Mb. Then consider the following tuple:

h # *ΝM(pM1
), . . . , ΝM(pMb

)+
$pM1

,...,$pMb

.

Tuple h is called the tuple of the HeartQuake numbers.

The name “HeartQuake numbers” comes after that of a family of
games of cards with two players, its combinatorial space being that of
Definition 15 when b # 2 [8].

A representation of the HeartQuake numbers, given a particular col-
lection of blocks Mi, is obtained by plotting tuples *Ν(pM1

), . . . , Ν(pMb
)+

in b-dimensional euclidean space.
In the following we concentrate our attention on the cases b # 2 and

b # 3.

4.1 Bidimensional HeartQuake numbers

This section focuses on HeartQuake numbers with b # 2, that is,

h # *Ν(pM1
), Ν(pM2

)+
$pM1

, $pM2

.

An example of the graphs of h can be seen in Figure 13.

4.1.1 Up to two classes of symbols

Let us first consider the subcase where M contains an even number of
elements, each either 0 or 1. Then the possibilities for M can be repre-
sented as nonnegative pairs (c1, c2) where c1 is the number of zeroes, c2
is the number of ones, and c1 6 c2 is even.

Complex Systems, 15 (2004) 97–120
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In so doing, the spectrum of all possible permutations can be repre-
sented as the following matrix:

89999999999999999999
:

(0, 2) (0, 4) . . .
(1, 1) (1, 3) (1, 5) . . .

(2, 0) (2, 2) (2, 4) . . .
(3, 1) (3, 3) (3, 5) . . .

(4, 0) (4, 2) (4, 4) . . .
* * *

;<<<<<<<<<<<<<<<<<<<
=

, (2)

where in each couple (x, y), x represents the values of c1 and y that of
c2. A value of zero means that the corresponding symbol is not part of
the multiset.

Let us call"x,y the graph of (x, y).
Figure 14 depicts 15 images of equation (2) and can be used to make

a number of observations. Let r and c be any two integers such that
r 6 c is even.

Observation 1. For any r > 0 and c > 0: "r,c can be partitioned into
four equal-sized regions.

This is clearly visible, for example, in the two last rows of Figure 14.

Observation 2. For any r and c: the pattern represented in "r,c is one
of those contained in "r,c62, that is, every graph is fully contained in its
right neighbor.

This is shown, for example, in Figures 14 and 15.

Observation 3. The four patterns in "r,c are the same as those in the
following images: "r+2,c, "r+1,c+1, and "r,c+2. Patterns are arranged
according to the following scheme:

# "r+1,c+1 "r,c+2
"r+2,c "r+1,c+1

$ ,
that is, a 2 3 2 matrix in which the diagonal contains the one repeated
pattern.

Another way to represent this is as:

"r,c # "r+2,c 6 2"r+1,c+1 6"r,c+2. (3)

Note that equation (3) represents a relationship between images of
r6c symbols and images with two symbols less. Iterating the process, one
may factorize any"r,c into a number of atomic patterns, or patterns that
cannot be further decomposed. Such patterns are all arranged in a frame
made of the first two rows and the first two columns of equation (2).

Complex Systems, 15 (2004) 97–120
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"1,3 "1,5 "1,7

"2,4 "2,6 "2,8

"3,3 "3,5 "3,7

"4,2 "4,4 "4,6

"5,3 "5,5 "5,7

Figure 14. HeartQuake images.

Complex Systems, 15 (2004) 97–120
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Figure 15. "3,3, "3,5, and "3,7.

Moreover, given any r > 2 and c > 2, the decomposition of "r,c is a
linear combination of images "0,i, "1,i, "j,0, and "j,1 with i 7 c and
j 7 r. For example, "8,6 can be factorized3 into the following atomic
patterns:

"8,6 # "0,6 6 8 3"1,5 6 28 3"0,4 6 112 3"1,3 6 210 3"0,2

6420 3"1,1 6 210 3"2,0 6 196 3"3,1 6 70 3"4,0

650 3"5,1 6 15 3"6,0 6 6 3"7,1 6"8,0. (4)

Figure 16 shows the distribution of the basic building blocks of "8,6
within equation (2), while Figure 17 shows its decomposition tree.

Observation 4. $r, c & "r,c is specular to "c,r, that is, " and its trans-
pose depict equal patterns up to a resizing and a rototranslation.

This is clearly visible comparing couples of images in Figure 14. Fig-
ure 18 shows three such couples.

Observation 5. Some images depict a certain degree of self-similarity.

As an example, see Figure 19, which depicts "8,6.

4.1.2 More than two classes of symbols

This section focuses on the HeartQuake numbers of permutations with
m > 2.

3The following short Mathematica program, courtesy of the reviewers of this paper,
can be used to factorize the expressions of the HeartQuake graphs for k # 2, b # 2.

hfactorize[expr_] := FixedPoint[Expand[# //. h[x_, y_] /; Min[x,y] > 1
1 h[x - 2, y] + 2h[x - 1, y - 1] + h[x, y - 2]] &, expr]

Complex Systems, 15 (2004) 97–120
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89999999999999999999999999999999999999999
:

( "210
0,2 "28

0,4 "1
0,6

"420
1,1 "112

1,3 "8
1,5 >

"210
2,0 ( ( >

"196
3,1 ( ( >

"70
4,0 ( ( >

"50
5,1 ( ( >

"15
6,0 ( ( >

"6
7,1 ( ( >

"1
8,0 ? ? ? ? ? "8,6

;<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
=

Figure 16. The basic blocks of image "8,6. "k
t means k occurrences of pattern

"t. The symbol “(” here means “pattern not involved.”

A number of observations made for the cases of m # 1 and m # 2
can be extended to the general case. For example, for m # 3, images
appear to consist of nine regions. Such regions represent patterns of
other images according to the following rule of decomposition:

"i,j,k # 2"i+1,j,k+1 6 2"i,j+1,k+1 6 2"i+1,j+1,k

6"i,j+2,k 6"i+2,j,k 6"i,j,k+2. (5)

For an example, see Figure 20 showing image"6,4,2 indicating its first-
level regions. Moreover, note"6,3,1 and the third region in the first row
of "5,3,2, that is, "5,2,1.

In permutations with a class consisting of exactly two symbols, a
collapse phenomenon occurs. One of the regions of the decomposition is
the pattern of a permutation with one class less than in the original, that
is, if the original image was from a permutation for which b # 3, that
region belongs to a permutation for which b # 2. This phenomenon is
observable in Figure 20: the region labeled"6,4 is clearly one for which
b # 2. Further decomposing such regions according to equation (3) it is
possible to obtain images of permutations for which b # 1.

Another interesting phenomenon occurs in images like "6,3,1 and
"5,2,1, that is, images of permutations in which at least one class of
symbols appears just once (see Figure 21). Applying equation (5) to
image "6,3,1 one gets

"6,3,1 # 2"5,3 6 2"6,2!"""""""""""""#"""""""""""""$
collapse to b#2 images

62"5,2,1 6"6,1,1 6"4,3,1 6 "6,3,+1!"""""#"""""$
impossible!

.

In other words, the decomposition rules still apply, and this leads to
“imaginary” regions, such as "6,3,+1, which cannot be visualized and
hence become empty regions.
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Figure 17. Decomposition tree for image "8,6. Note how the leaves are the
“atomic patterns” in equation (4).

Is it possible to generalize the decomposition rule to images for which
b > 2? Experimental results suggest that, for any integer b > 2, a b-
class, n-symbol HeartQuake image can be decomposed into a matrix
of b 3 b regions. This decomposition can be made as follows: b single
regions of n + 2 symbols each are disposed through the main diagonal
and b 3 (b + 1)/2 double regions of n + 2 symbols, each symmetrically
located with respect to the main diagonal. More precisely: given Ik #
!0, 1, . . . , k+1" a set of indexes, let us denote with !i" the generic singleton
and with !i, j" the generic subset of two elements of Ik. Experimental
results show that the general decomposition rule is:

"Ν0,Ν1,...,Νb+1
# &

!i"@Ib

"Νa<i, Νi+2, Νi<b
6 2 &

!i,j"@Ib, i<j

"Νa<i, Νi+1, Νi<b<j, Νj+1, Νj<c<b
. (6)

Equation (6) is consistent with previously described equations (3)
and (5). Likewise, it again represents a relationship between images
of permutations of r 6 c symbols and images of permutations with two
symbols less. The process may be iterated producing patterns that are
“atomic” for Hb, the extension of equation (2). Such patterns inherit
the same distribution of those in equation (2): they lie in the first two
superficial strata of the hypercube. Moreover, given any image in Hb, its
basic patterns are localizable with the same method shown in Figure 16.

Complex Systems, 15 (2004) 97–120
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"12,2 "10,4 "8,6

"2,12 "4,10 "6,8

Figure 18. A set of images of HeartQuake numbers with n # 14 and m # 2.
Ignoring dimension and rotation, images"(i,j) and"(j,i) depict the same pattern.

4.2 Three-dimensional graphs

HeartQuake numbers with b # 3, that is,

h # *ΝM1
(pM1

), ΝM2
(pM2

), ΝM3
(pM3

)+
$pM1

, $pM2
, $pM3

,

are a case worth considering mainly because of their natural mapping
to tridimensional images. Examples of the graphs of h can be seen in
Figures 22 and 23.4

5. Conclusions

This paper has introduced a number of series, all stemming from a sim-
ple recursive procedure that generates permutations of words. Such a
recursive procedure can be interpreted as a dynamic system in which
the permutations represent the orbits of a permutation-successor oper-
ator. Some geometrical representations for that dynamic system have

4Rendering was done with the Persistence of Vision ray-tracer, available at
http://www.povray.org.
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Figure 19. Image "8,6.

also been introduced, which exhibit complex properties such as self-
similarity, symmetry, and factorizability. Yet another example of the
emergence of complex structures from simple rules or algorithms [9, 10]
has been provided and discussed.
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