
Genetic Algorithm Search for Predictive
Patterns in Multidimensional Time Series

Arnold Polanski

School of Management and Economics
Queen’s University of Belfast
25 University Square
Belfast BT7 1NN, United Kingdom
a.polanski@qub.ac.uk

Based on an algorithm for pattern matching in character strings, a pat-
tern matching machine is implemented that searches for occurrences of
patterns in multidimensional time series. Before the search process takes
place, time series data is encoded in user-designed alphabets. The pat-
terns, on the other hand, are formulated as regular expressions that are
composed of letters from these alphabets and operators. Furthermore, a
genetic algorithm is developed to breed patterns that maximize a user-
defined fitness function. In an application to financial data, it is shown
that patterns bred to predict high exchange rates volatility in training
samples retain statistically significant predictive power in validation sam-
ples.

1. Introduction

This work is a contribution to the rapidly developing research area of
data mining, a host of methods that aim at revealing hidden relation-
ships and regularities in large sets of data. Of particular importance is
the class of data mining problems concerned with discovering fre-
quently occurring patterns in sequential data. We propose a versatile
nonparametric technique for representing multidimensional data by
encoding it in alphabets that are defined by an analyst user. The en-
coded data is explored by means of patterns, which are composed of
operators and letters from these alphabets. Since patterns are regular
expressions, they can be automatically manipulated, combined, and
evaluated. These operations lie at the heart of our genetic algorithm
(GA), which evolves patterns in order to breed ever better descriptors
and predictors of the data. A concise and flexible pattern description
language is, therefore, a powerful tool for data mining that serves two
purposes: on the one hand, as a language in which theories concerned
with the underlying data generating process are formulated and tested
and, on the other, as a forecasting instrument.

The present approach shows its special strength when dealing with
multidimensional data that can be analyzed under multiple criteria
and/or characterized by several indicators. Usually, each criterion
(indicator) forms the base of an alphabet. Preprocessing the data by
encoding it in alphabets ensures that the search for patterns unfolds
efficiently. This is manifestly a precondition for a viable GA applica-
tion when the algorithm evaluates patterns based on their matches.
Furthermore, the possibility to design data-specific alphabets makes
the method applicable not only to highly diverse record sets but also
allows each researcher to analyze the (same) data with an idiosyn-
cratic language. We stress here an important departure from the more
traditional techniques of forecasting complex systems. Many meth-
ods, like kernel regression, neural networks, or reinforcement learning
(see [1] for recent developments), estimate the future output of a sys-
tem as a function of a fixed number of past observations. In contrast,
the present approach does not restrict the “relevant past” to time win-
dows of fixed lengths. It is only important that the past state of the sys-
tem and the system’s response to that state frequently generate measur-
able outcomes with some, typically ex ante unknown, characteristics.
These characteristics are encapsulated as patterns in a suitable lan-
guage and searched for in the encoded time series.

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

The present approach shows its special strength when dealing with
multidimensional data that can be analyzed under multiple criteria
and/or characterized by several indicators. Usually, each criterion
(indicator) forms the base of an alphabet. Preprocessing the data by
encoding it in alphabets ensures that the search for patterns unfolds
efficiently. This is manifestly a precondition for a viable GA applica-
tion when the algorithm evaluates patterns based on their matches.
Furthermore, the possibility to design data-specific alphabets makes
the method applicable not only to highly diverse record sets but also
allows each researcher to analyze the (same) data with an idiosyn-
cratic language. We stress here an important departure from the more
traditional techniques of forecasting complex systems. Many meth-
ods, like kernel regression, neural networks, or reinforcement learning
(see [1] for recent developments), estimate the future output of a sys-
tem as a function of a fixed number of past observations. In contrast,
the present approach does not restrict the “relevant past” to time win-
dows of fixed lengths. It is only important that the past state of the
system and the system’s response to that state frequently generate
measurable outcomes with some, typically ex ante unknown, charac-
teristics. These characteristics are encapsulated as patterns in a suit-
able language and searched for in the encoded time series.

The analysis and forecasting of multidimensional data is at the
center of research in, for example, finance, electrical engineering, theo-
retical physics, and the computer sciences. Various mathematical
methods have been proposed for the description and analysis of inter-
dependencies in multivariate time series. An interested reader can find
a recent overview of these methods (including Granger causality,
directed transfer functions, and partial directed coherence) in [2].
In this work we are interested in an ex ante unknown type of multidi-
mensional relationship with possibly changing time frames; as such, a
less structured methodology is required. As a well established and ver-
satile search heuristic, GAs seem to be a promising approach for
generating pattern descriptors with predictive power. Although mathe-
matical foundations and properties of GAs are far from being settled,
there is some evidence that GAs might become a generic tool for
universal computation. For example, the work by Sapin et al. [3, 4]
suggests that GAs have the potential to identify cellular automata that
support universal computation.

This paper is organized as follows: in Section 2, we describe the en-
coding process for multidimensional time series and define patterns.
The GA for pattern evolution is presented in Section 3. In Section 4,
some related approaches are discussed. Section 5 contains an applica-
tion to financial time series data and Section 6 concludes.

2. Time Series, Texts, and Patterns

Based on an algorithm for pattern matching in character strings [5],
we implement a deterministic pattern matching machine that
searches for occurrences of patterns in multidimensional time series
x ‡ Ix1, … , xNM, where xi ‡ Ix1

i , … , xT
i M£ is a vector of T observa-

tions. Before the search process takes place, the time series data is en-
coded as strings of letters from user-defined alphabets. Alphabets are
sets composed of mathematical expressions (conditions) that yield the
Boolean value true or false when evaluated with respect to x. For ex-
ample, the condition xt

i > xt-1
i returns true (false) at all dates t at

which the ith time series increases (weakly decreases). A sequence of
conditions is called an alphabet if exactly one of them is true in each
period t. Hence,

196 A. Polanski

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

Based on an algorithm for pattern matching in character strings [5],
we implement a deterministic pattern matching machine that
searches for occurrences of patterns in multidimensional time series
x ‡ Ix1, … , xNM, where xi ‡ Ix1

i , … , xT
i M£ is a vector of T observa-

tions. Before the search process takes place, the time series data is en-
coded as strings of letters from user-defined alphabets. Alphabets are
sets composed of mathematical expressions (conditions) that yield the
Boolean value true or false when evaluated with respect to x. For ex-
ample, the condition xt

i > xt-1
i returns true (false) at all dates t at

which the ith time series increases (weakly decreases). A sequence of
conditions is called an alphabet if exactly one of them is true in each
period t. Hence,

9xt
3 > xt-1

3 , xt
3 § xt-1

3 =

is an example of an alphabet with two mutually exclusive conditions-
letters. Given a multidimensional time series x and a set of alphabets
9A1, … , AK=, the following algorithm generates a TäK dimensional
text a ‡ Iat

kM :

for each date t ‡ 1, … , T
for each alphabet k ‡ 1, … , K

at
k ‡ the ordinal of a condition in Ak

 that evaluates true with regard to x at t.

Each column ak in the text a represents the information in x that is
encoded through Ak. A generic element at

k is an integer between one
and the number of conditions-letters in the alphabet Ak. We consider,
therefore, the matrix a as a multidimensional text recorded in natural
numbers. Note that the number of time series N in x and the number
of alphabets K will usually differ. The diagram in Figure 1 illustrates
the encoding of a fragment of five observations from a multidimen-
sional time series x ‡ Ixt

1, … , xt
4M according to two alphabets

9A1, A2= with the resulting bidimensional text a ‡ Iat
1, at

2M for
t ‡ 1, … , 5.

The choice of alphabets is entrusted to the expertise of the end user
of the system. Generally, the letters in the alphabets will test condi-
tions on certain indicators that are deemed relevant for the subject
under study. The latter indicators may be derived from economic vari-
ables in early warning systems for the prediction of financial crises
[6, 7], from specific protein information in cancer detection systems
[8, 9], or from technical trading rules [10–13]. The almost unre-
stricted freedom in the specification of alphabets is at the same time a
strength and a weakness of the present approach. On the one hand,
its inherent flexibility allows for immediate and fine-tuned application
to many research areas but, on the other, it burdens the researcher
with a tedious and ultimately open question of finding optimal alpha-
bets. In Section 5, we illustrate the types of alphabets that can be used
for encoding financial data.

Genetic Algorithm Search for Predictive Patterns 197

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

Figure 1. The encoding of a time series that includes dates. The time series x1

contains the dates 5.12.2005 through 9.12.2005 that correspond to weekdays
1 through 5 (Monday through Friday).

Given a set of alphabets, a succinct description of a relevant aspect
of the underlying data is expressed as a pattern. The latter is defined
as a regular expression that is composed of letters, operators, and
parentheses. A letter is represented by a pair [condition-letter number
: alphabet] enclosed in square brackets. For example, @2 : 1D stands for
the second condition-letter from the first alphabet. We consider the
three fundamental operators concatenation, or, and and.

† Concatenation, as used, for instance, in the pattern @2 : 1D @3 : 2D where
the second letter from the first alphabet is followed by the third letter
from the second alphabet. Since the text a consists of natural numbers
and at

k ‡ i is interpreted as the ith letter of the kth alphabet at position
t, this pattern matches fragments of a, starting at t, such that at

1 ‡ 2
and at+1

2 ‡ 3.

† Or (+) between two subpatterns P1 and P2 implies that there is a match
if and only if either P1 or P2 (or both) occurs. For example, the pattern
@3 : 1D @5 : 1D + @4 : 2D @4 : 2D describes fragments of the text a, where
at

1 ‡ 3 is followed by at+1
1 ‡ 5 or where at

2 ‡ at+1
2 ‡ 4.

198 A. Polanski

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

† And (*) between two subpatterns P1 and P2 implies that there is a
match if and only if both P1 and P2 occur simultaneously. The pattern
@3 : 1D * @4 : 2D @6 : 2D detects, therefore, fragments of a such that at

1 ‡ 3
and at

2 ‡ 4, at+1
2 ‡ 6.

Finally, parentheses induce the desired order of operators in the usual
way:

H@3 : 1D + @4 : 1DL * @5 : 2D ª Iat
1 ‡ 3 or at

1 ‡ 4M and at
2 ‡ 5,

@3 : 1D + H@4 : 1D * @5 : 2DL ª at
1 ‡ 3 or Iat

1 ‡ 4 and at
2 ‡ 5M.

A pattern that complies with the syntactic rules can be searched for in
the encoded text. The following algorithm searches for matches of the
pattern p in the text a between dates T1 and T2 (i.e., in all rows of a
between and including aT1

 and aT2
):

set t ‡ T1;
while t § T2 repeat
8 if a match of length k starts at date t then
 record Ht, t + k - 1L in the set MpHT1, T2L;
 set t ‡ t + 1; <.

The outcome of the algorithm is exemplified in Figure 2, where the
fragments of the text a that are matched by the pattern specification
p ‡ @1 : 1D * H@2 : 2D + @4 : 2D @5 : 3DL are enclosed in rectangles (the first
rectangle matches @1 : 1D * @2 : 2D while the second matches
@1 : 1D * H@4 : 2D @5 : 3DL).

Figure 2. Fragments of the text a that are matched by the pattern p.

The matching algorithm itself is based on the implementation
of the deterministic finite state automaton in [5] with important modi-
fications to account for multidimensional texts and operators. After
running the matching program, the set MpHT1, T2L contains pairs
Hts, teL with the start and end dates of matches. If two or more
matches start on the same date, the match with the minimum length is
recorded. If two or more matches end at the same time, only one of
them is kept in MpHT1, T2L.

Genetic Algorithm Search for Predictive Patterns 199

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

The matching algorithm itself is based on the implementation
of the deterministic finite state automaton in [5] with important modi-
fications to account for multidimensional texts and operators. After
running the matching program, the set MpHT1, T2L contains pairs
Hts, teL with the start and end dates of matches. If two or more
matches start on the same date, the match with the minimum length is
recorded. If two or more matches end at the same time, only one of
them is kept in MpHT1, T2L.

The elements of MpHT1, T2L will be typically used as signals of
something, say, a financial crisis, a share price increase, or a tissue de-
veloping cancer. In order to evaluate the predictive power of patterns,
the user must define a fitness function that maps the set of matches
into real numbers. For example, if the vector x1 contains stock prices
at consecutive decision times (i.e., days or hours), then the function

‚
Hts,teLœMpHT1,T2L

ln
xte+1

1

xte
1

computes the accumulated profit that is made when the stock is
bought, whenever a match ends in the decision period. This function
attains high values for patterns that consistently signal rising stock
prices after match occurrences. It can be interpreted, therefore, as a
measure of fitness for patterns that act as buy signals. An interesting
point to note is that the patterns are searched for in the encoded text
a, while the evaluation of the pattern fitness involves the original time
series x.

Besides the use as a forecasting instrument, the present approach
may be applied as a language, in which quantitative theories are for-
mulated. Suppose, for instance, that a researcher conjectures that a
variable x1 under study exceeds a desired level x 1 if either the vari-
able x2 assumes values below x 2 or the variable x3 assumes values
above x 3. Then, after encoding x ‡ Ix1, x2, x3M in three alphabets,

Ak ‡ 9xt
k § xk, xt

k > xk=, k ‡ 1, .. , 3,

for some thresholds xk, the latter theory can be phrased in terms of
the pattern

@2 : 1D * H@1 : 2D + @2 : 3DL

and matched with the data.
In Section 3 we develop a GA for pattern evolution. The aim of the

GA is to create a population of patterns that are optimized with re-
spect to a fitness function over a training set. Obviously, patterns
bred in training samples will be reliable predictors only if they retain
their predictive power in evaluation samples.

200 A. Polanski

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

3. Genetic Algorithm

A GA is a search technique for finding approximate solutions to opti-
mization and search problems. GAs are typically implemented as a
computer simulation in which a population of abstract representa-
tions (chromosomes) of candidate solutions to an optimization prob-
lem evolves toward better solutions. The present GA evolves patterns,
that is, regular expressions that use the building blocks of letters,
parentheses, and operators. By combining and modifying the best per-
forming parent patterns, new generations of offspring with increasing
average fitness are created. The present GA uses the three basic opera-
tions of crossover, mutation, and selection.

† Crossover (xover) extracts fragments from two parent patterns and com-
bines them by means of fundamental operators into a valid offspring
pattern as illustrated in the following example:
H@1 : 1D + @1 : 2DL@2 : 3D xover @2 : 1D @2 : 2D * @3 : 1D
Ø H@1 : 1D + @1 : 2DL + @3 : 1D.

In this example, a combination of H@1 : 1D + @1 : 2DL and @3 : 1D is inher-
ited by the offspring, while @2 : 3D and @2 : 1D @2 : 2D vanish.

† Mutation changes a part of the pattern to a subpattern that matches a
fragment randomly drawn from the encoded text a. In the next exam-
ple, the expression in parentheses undergoes a mutation to the subpat-
tern @1 : 2D * @3 : 3D that matches at

2 ‡ 1, at
3 ‡ 3, a randomly retrieved

fragment of a:
@1 : 1D @2 : 1D H@1 : 1D + @3 : 2DL Ømut @1 : 1D @2 : 1D H@1 : 2D * @3 : 3DL.

† Selection picks out the best-performing patterns (with respect to the
user-defined fitness function).

Note that the result of the breeding process is a regular expression
that complies with the syntactic rules for patterns. The structure of
the main loop of the GA is depicted in Figure 3.

Genetic Algorithm Search for Predictive Patterns 201

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

Figure 3. The structure of the main loop of the pattern breeding GA.

4. Related Literature

Faced with abundant literature on data mining, we focus on three
closely related papers in order to emphasize the main departures of
the present work from the existing approaches.

Szpiro [13] implements a GA that permits the discovery of equa-
tions of the data-generating process in symbolic form. His GA uses
parts of equations, constants, and the basic arithmetic operators to
breed ever better formulas. Apart from furnishing a deeper understand-
ing of the dynamics of a process, his method also permits global
predictions and forecasts. Unlike his search for a hidden relationship,
our GA does not work on raw data but on encoded information. This
approach allows for including predictors (e.g., adaptive moving aver-
ages) that are very unlikely or impossible to be developed by Szpiro’s
algorithm. Furthermore, his algorithm is restricted to uncovering func-
tional relationships whereas ours detects relevant patterns in data.

Dempster [14] applies a GA to evolve trading rules that are based
on technical indicators. Potential rules are constructed as binary trees
in which the terminal nodes are indicators (e.g., adaptive moving aver-
ages, relative strength index, stochastics, or momentum oscillators)
yielding a Boolean signal at each time step, and the nonterminal
nodes are the Boolean operators AND, OR, and XOR. The result
of this procedure is a set of fittest trading rules that recommend a
transaction (buy or sell) in each period. Unlike trading rules, patterns
are not constrained to emit a buy/sell signal at each time step. They
are more flexible in the sense that they can focus exclusively on infor-
mative sequences of observations. Furthermore, the algorithm in [14]
(and other commonly used algorithms for information extraction)
work with data windows of fixed length. The GA described in Section
3 breeds patterns without knowing the number of observations that
they match at the time of the design. Hence, it is able to create pat-
terns that are able to detect regularities which emerge after specific his-
tories. In this manner, qualitatively identical phenomena that unfold
on different time scales (fractal patterns) or stretch over time win-
dows of variable length can be captured.

202 A. Polanski

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

Dempster [14] applies a GA to evolve trading rules that are based
on technical indicators. Potential rules are constructed as binary trees
in which the terminal nodes are indicators (e.g., adaptive moving aver-
ages, relative strength index, stochastics, or momentum oscillators)
yielding a Boolean signal at each time step, and the nonterminal
nodes are the Boolean operators AND, OR, and XOR. The result
of this procedure is a set of fittest trading rules that recommend a
transaction (buy or sell) in each period. Unlike trading rules, patterns
are not constrained to emit a buy/sell signal at each time step. They
are more flexible in the sense that they can focus exclusively on infor-
mative sequences of observations. Furthermore, the algorithm in [14]
(and other commonly used algorithms for information extraction)
work with data windows of fixed length. The GA described in Section
3 breeds patterns without knowing the number of observations that
they match at the time of the design. Hence, it is able to create pat-
terns that are able to detect regularities which emerge after specific his-
tories. In this manner, qualitatively identical phenomena that unfold
on different time scales (fractal patterns) or stretch over time win-
dows of variable length can be captured.

Finally, Packard [15] develops a GA that evolves a population of
conditions, defined on an unidimensional independent variable x, as
in the following example:

C ‡ H20.1 § xtL Ô H30 § xt+1 § 40.5L Ô Hxt+2 § 30L.

Packard’s algorithm works on conditions, adjusting constants and op-
erators in order to obtain good predictors for a dependent variable.
This approach is similar in spirit to evolving expressions, composed
of conditions-letters, as described in Section 2. Nevertheless, an at-
tempt to include elaborated indicators into Packard’s conditions leads
to intolerable runtimes as they must be evaluated during the matching
phase for each date t. Furthermore, an obvious extension of Packard’s
GA to multidimensional time series suffers severely from the curse of
dimensionality.

5. An Application

5.1 Data and Alphabets
As an application, we tested the predictive power of patterns on finan-
cial time series data. We used the daily exchange rates for several cur-
rency pairs. The data was downloaded from
http://www.forexrate.co.uk/forexhistoricaldata.php.

For each pair and day t, the vector xt ‡ Ixt
i Mi‡1, … , 5 contained

xt
1 ‡ date, xt

2 ‡ open, xt
3 ‡ close, xt

4 ‡ min, xt
5 ‡ max,

that is, the current date and the opening, closing, maximum, and mini-
mum exchange rates during this day. We used 1201 weekday observa-
tions from August 25, 2003 through April 12, 2008 (hence, x ‡ Ixt

i M

had the dimensions 1201ä5). We encoded x according to six alpha-
bets obtaining a text a that is six-dimensional and 1200 characters
long:

Genetic Algorithm Search for Predictive Patterns 203

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

A1 ‡ 9xt
1 ‡ Monday, … , xt

1 ‡ Friday=,

A2 ‡
xt

3

xt-1
3

< 0.998, 0.998 §
xt

3

xt-1
3

< 0.9985, .. ,
xt

3

xt-1
3

¥ 1.002 ,

A3 ‡
xt

3

xt
4
< 1.0005, 1.0005 §

xt
3

xt
4
< 1.001, .. ,

xt
3

xt
4
¥ 1.005 ,

A4 ‡
xt

5

xt
3
< 1.0005, 1.0005 §

xt
5

xt
3
< 1.001, .. ,

xt
5

xt
3
¥ 1.005 ,

A5 ‡
xt

3

xt
2
< 0.996, 0.996 <

xt
3

xt
2
§ 0.997 , .. ,

xt
3

xt
2
¥ 1.004 ,

A6 ‡
xt

5

xt
4
< 1.0005, 1.0005 §

xt
5

xt
4
< 1.001, .. ,

xt
5

xt
4
¥ 1.005 .

All alphabets except A1 were composed of nine conditions-letters and
all of them used only past and present information in x. In particular,
each row at of the text was generated by accessing information in
xt-1 and xt only. The requirement of using only available information
is, obviously, essential when we test the predictive power of patterns.

5.2 Pattern Evaluation and the Fitness Function
In order to create effective patterns by means of a GA in-sample, and
to assess their predictive power out-of-sample, a suitable definition of
the fitness function is crucial. The fitness function that we employed
was designed to measure the difference between sample means for
two mutually exclusive and collectively exhaustive sets: the set of end-
dates of matches and its complement. Specifically, for each pattern p
that was matched in the time window @T1, T2D, we partitioned this
window into two groups: the subset M of end-dates of p-matches and
its complement NM. In each subset, we computed the sample mean
and the sample variance for the next day log-returns,

xm ‡ ‚tœM

ln
xt+1

3

xt+1
2

nm
,

xn m ‡ ‚tœNM

ln
xt+1

3

xt+1
2

nn m
,

204 A. Polanski

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

sm
2 ‡ ‚tœM

ln
xt+1

3

xt+1
2

- xm

2

nm - 1
,

sn m
2 = ‚tœNM

ln
xt+1

3

xt+1
2

- xnm

2

nn m - 1
,

where nm ‡ †M§ and nn m ‡ †NM§.
For these values, we calculated the difference-of-means statistic,

treturn ‡
xm - xn m

sm
2 ë nm + sn m

2 ë nn m

,

and used it as both the fitness function for pattern breeding in the
training set and as an estimate of predictive power in the validation
set. The fitness function favored patterns indicating relatively high ex-
pected returns for the next day. Should the evolved patterns retain
high fitness out-of-sample, our approach would be a (statistically) ef-
fective forecasting instrument.

We applied the same procedure to define the performance measure
trange to evaluate patterns with respect to the next-day log difference
in intraday extreme (min and max) values lnIxt+1

5 ë xt+1
4 M. Parkinson

[16] proposed the difference in extreme values as a proxy for volatil-
ity. We therefore considered patterns evolved with trange as indicators
of high volatility.

5.3 Genetic Algorithm
After encoding the data and defining the fitness function, we run a
number of GA experiments. The main loop of each GA experiment
(see Figure 3) evolved a population of N ‡ 100 patterns, out of which
the elite of K ‡ 15 fittest survived each round and were selected to re-
produce. Each breeding loop was repeated 50 000 times using a train-
ing window of 800 observations to compute the fitness. Subsequently,
the single best performing pattern of the breeding stage was tested in
an out-of-sample (validation) window of 400 observations. We experi-
mented with different parameter values for the GA operators without,
however, detecting a significant impact on the results. Furthermore, in
order to avoid overfitting in the training set, we allowed only patterns
with at least 10 matches per 100 observations to survive.

Genetic Algorithm Search for Predictive Patterns 205

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

5.4 Results
Table 1 summarizes the results of the GA experiment, which were
computed as averages over 10 runs. Broadly speaking, Table 1 con-
firms the well-known stylized facts that the returns are not pre-
dictable but the volatility is (see [17] for a survey). Specifically, given
the high numbers of matches in validation sets (Table 1), we could
rely on the central limit theorem and assume that the statistic treturn is
standard normal under the Null of equal means in the subsets M and
NM of the validation set. As the third column in Table 1 shows, the
Null could not be rejected at any reasonable significance level for any
currency pair. In other words, the best performing pattern in the train-
ing set (with the fitness reported in the second column) failed to de-
tect matches in the validation set that were followed by significantly
higher log returns for the next day.

On the other hand, the Null was rejected at least at the 1% and,
usually, much lower, significance level when tested for the log differ-
ence in extreme values with the trange statistic. Only for the pair GBP /
USD in the validation set did we obtain the P-value H2.34L º 1%. This
is probably due to the relatively small number of matches (45) in this
set. The next largest P-value in the validation set is of order 10-6

(trange ‡ 4.36 for GBP / CHF).
The winning pattern in the training set detected effectively next-

day high volatility also out-of-sample (the last column in Table 1).
Our approach was, therefore, successful at creating (statistically) reli-
able predictors of volatility.

Currencies treturn training
treturn

validation trange training
trange

validation

GBP ê EUR 5.23 H220L -1.09 H107L 7.14 H202L 5.04 H97L

GBP ê USD 5.34 H212L 0.31 H132L 7.20 H172L 2.34 H45L

GBP ê CHF 5.90 H163L -0.45 H71L 7.02 H190L 4.36 H92L

USD ê EUR 5.66 H188L 0.77 H163L 7.35 H200L 4.72 H89L

Table 1. In-sample (training) and out-of-sample (validation) t-statistics for
one-day-ahead prediction of returns ln Ixt+1

3 ë xt+1
2 M (treturn) and volatility

ln Ixt+1
5 ë xt+1

4 M (trange). In parentheses, the number of matches.

To compare our procedure with a standard technique of volatility
forecasting, we tested the forecasts generated by the exponentially
weighted moving average (EWMA). EWMA is widely used in practice
due to its simplicity and its reported superiority over more sophisti-
cated models [18]. The EWMA specifies the next period’s volatility
vt+1 as a weighted average of the current modeled volatility vt and the
current observed volatility, here measured by the price range
ln Ixt

5 ë xt
4M:

206 A. Polanski

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

To compare our procedure with a standard technique of volatility
forecasting, we tested the forecasts generated by the exponentially
weighted moving average (EWMA). EWMA is widely used in practice
due to its simplicity and its reported superiority over more sophisti-
cated models [18]. The EWMA specifies the next period’s volatility
vt+1 as a weighted average of the current modeled volatility vt and the
current observed volatility, here measured by the price range
ln Ixt

5 ë xt
4M:

vt+1 ‡ a vt + H1 - aL ln
xt

5

xt
4

.

For the same data as in the GA experiment, we estimated the EWMA
parameter a in the training window of 800 observations by the maxi-
mum likelihood method and specified the threshold tv of “high volatil-
ity”. This threshold was set equal to the third quartile of the empirical
distribution of observed volatilities in order to create a similar num-
ber of high volatility days as in the GA experiment, that is, roughly
1/4 of all observations in the sample. Using the given specifications,
we partitioned the validation set of 400 observations into two groups:
the subset M of high volatility forecasts, vt+1 > tv, and its comple-
ment NM. For each subset, we computed the sample mean and the
sample variance of observed volatilities lnIxt+1

5 ë xt+1
4 M and calculated

the difference-of-means statistic. The results, reported in Table 2,
indicate that EWMA forecasts of high volatility are statistically signifi-
cant, although (with the exception of the GBP / USD pair) the
t-statistics lie below the values from the GA experiment (Table 1). In
this simple example, the parsimony of the EWMA approach may out-
weigh its slightly worse performance as compared to the elaborate
GA procedure. The latter procedure, however, is designed to detect
complicated multidimensional relationships where its full strength can
come to the fore.

Currencies trange training trange validation

GBP ê EUR 6.27 H202L 4.81 H97L

GBP ê USD 5.80 H172L 3.73 H45L

GBP ê CHF 5.22 H190L 3.76 H92L

USD ê EUR 6.05 H200L 4.28 H89L

Table 2. In-sample (training) and out-of-sample (validation) t-statistics for
one-day-ahead EWMA forecasts. The forecasts were computed with the ML
estimate à ‡ 0.94. In parentheses, the number of “high volatility” days.

6. Conclusions

Based on an algorithm for pattern matching in character strings, we
implement a pattern-matching machine that searches for occurrences
of specified patterns in multidimensional time series. Before the search
process takes place, the time series are encoded as strings of letters
from user-defined alphabets. The preprocessing of the raw data has
conceptual advantages and also speeds up the matching phase deci-
sively. Since the evaluation of patterns is based on their matches, an ef-
ficient matching algorithm is essential for creating optimal patterns by
means of a genetic algorithm (GA). The GA combines parent patterns
in order to breed offspring (randomly modified by mutations) that are
ever better predictors. In an application to financial time series, we
show that the presented GA has the potential to produce patterns
with significant out-of-sample predictive power.

Genetic Algorithm Search for Predictive Patterns 207

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

Based on an algorithm for pattern matching in character strings, we
implement a pattern-matching machine that searches for occurrences
of specified patterns in multidimensional time series. Before the search
process takes place, the time series are encoded as strings of letters
from user-defined alphabets. The preprocessing of the raw data has
conceptual advantages and also speeds up the matching phase deci-
sively. Since the evaluation of patterns is based on their matches, an ef-
ficient matching algorithm is essential for creating optimal patterns by
means of a genetic algorithm (GA). The GA combines parent patterns
in order to breed offspring (randomly modified by mutations) that are
ever better predictors. In an application to financial time series, we
show that the presented GA has the potential to produce patterns
with significant out-of-sample predictive power.

References

[1] W. Wobcke and M. Zhang, eds., Advances in Artificial Intelligence:
21st Australasian Joint Conference on Artificial Intelligence (AI 2008),
Auckland, New Zealand, Berlin: Springer-Verlag, 2009.

[2] R. Dahlhaus, J. Kurths, P. Maass, and J. Timmer, eds., Mathematical
Methods in Time Series Analysis and Digital Image Processing,
Springer, 2008.

[3] E. Sapin, O. Bailleux, and J. Chabrier, “Research of Complexity in Cellu-
lar Automata through Evolutionary Algorithms,” Complex Systems,
17(3), 2007 pp. 231–241

[4] E. Sapin and L. Bull, “Evolutionary Search for Cellular Automata Logic
Gates with Collision-Based Computing,” Complex Systems, 17(4), 2008
pp. 321–338.

[5] R. Sedgewick, Algorithms, Reading, MA: Addison-Wesley, 1988.

[6] F. X. Diebold and G. D. Rudebusch, “Scoring the Leading Indicators,”
Journal of Business, 62(3), 1989 pp. 369–91.

[7] G. Kaminsky, S. Lizondo, and C. Reinhart, “Leading Indicators of Cur-
rency Crises,” IMF Staff Papers, 45(1), 1998 pp. 1–48.

[8] B. L. Adam et al., “Serum Protein Fingerprinting Coupled with a Pat-
tern-Matching Algorithm Distinguishes Prostate Cancer from Benign
Prostate Hyperplasia and Healthy Men,” Cancer Research, 62(13),
2002 pp. 3609–3614.

[9] E. F. Petricoin et al., “Serum Proteomic Patterns for Detection of
Prostate Cancer,” Journal of the National Cancer Institute, 94(20),
2002 pp. 1576–1578.

[10] H. Iba and N. Nikolaev, “Genetic Programming Polynomial Models of
Financial Data Series,” in Proceedings of the 2000 Congress on Evolu-
tionary Computation (CEC ‘00), La Jolla, CA, New York: IEEE Press,
2000 pp. 1459–1466.

[11] R. Levich and L. Thomas, “The Significance of Technical Trading-Rule
Profits in the Foreign Exchange Market: A Bootstrap Approach,” Jour-
nal of International Money and Finance, 12(5), 1993 pp. 451–474.

[12] C. Neely, P. Weller, and R. Dittmar, “Is Technical Analysis in the For-
eign Exchange Market Profitable? A Genetic Programming Approach,”
Journal of Financial and Quantitative Analysis, 32(4), 1997
pp. 405–426.

208 A. Polanski

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

[13] G. Szpiro, “A Search for Hidden Relationships: Data Mining with
Genetic Algorithms,” Computational Economics, 10(3), 1997
pp. 267–277.

[14] M. A. H. Dempster, T. W. Payne, Y. Romahi, and G. W. P. Thompson,
“Computational Learning Techniques for Intraday FX Trading Using
Popular Technical Indicators,” in IEEE Transactions on Neural Net-
works, 12(4), 2001 pp. 744–754.

[15] N. Packard, “A Genetic Learning Algorithm for the Analysis of Com-
plex Data,” Complex Systems, 4(5), 1990 pp. 543–572.

[16] M. Parkinson, “The Extreme Value Method for Estimating the Variance
of the Rate of Return,” Journal of Business, 53(1), 1980 pp. 61–65.

[17] T. Bollerslev, R. Chou, and K. Kroner, “ARCH Modeling in Finance: A
Review of the Theory and Empirical Evidence,” Journal of Economet-
rics, 52(1–2), 1992 pp. 5–59.

[18] C. Guermat and R. D. F. Harris, “Forecasting Value at Risk Allowing
for Time Variation in the Variance and Kurtosis of Portfolio Returns,”
International Journal of Forecasting, 18(3), 2002 pp. 409–419.

Genetic Algorithm Search for Predictive Patterns 209

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

