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Based on an algorithm for pattern matching in character strings, a pat-
tern matching machine is implemented that searches for occurrences of
patterns in multidimensional time series. Before the search process takes
place,  time  series  data  is  encoded  in  user-designed  alphabets.  The  pat-
terns, on the other hand, are formulated as regular expressions that are
composed of letters from these alphabets and operators. Furthermore, a
genetic  algorithm is  developed to breed patterns that  maximize a user-
defined fitness function. In an application to financial data, it is shown
that  patterns  bred  to  predict  high  exchange  rates  volatility  in  training
samples retain statistically significant predictive power in validation sam-
ples. 

1. Introduction

This work is a contribution to the rapidly developing research area of
data mining, a host of methods that aim at revealing hidden relation-
ships and regularities in large sets of data. Of particular importance is
the  class  of  data  mining  problems  concerned  with  discovering  fre-
quently  occurring patterns  in  sequential  data.  We propose a  versatile
nonparametric  technique  for  representing  multidimensional  data  by
encoding it  in  alphabets  that  are  defined by an analyst  user.  The  en-
coded data is explored by means of patterns, which are composed of
operators  and letters  from these  alphabets.  Since  patterns  are  regular
expressions,  they  can  be  automatically  manipulated,  combined,  and
evaluated.  These  operations  lie  at  the  heart  of  our  genetic  algorithm
(GA), which evolves patterns in order to breed ever better descriptors
and predictors of the data.  A concise and flexible pattern description
language is, therefore, a powerful tool for data mining that serves two
purposes: on the one hand, as a language in which theories concerned
with the underlying data generating process are formulated and tested
and, on the other, as a forecasting instrument.

The present approach shows its special strength when dealing with
multidimensional  data  that  can  be  analyzed  under  multiple  criteria
and/or  characterized  by  several  indicators. Usually, each  criterion
(indicator)  forms  the  base  of  an  alphabet.  Preprocessing  the  data  by
encoding  it  in  alphabets  ensures  that  the  search  for  patterns  unfolds
efficiently.  This  is  manifestly  a precondition for a viable  GA applica-
tion  when  the  algorithm  evaluates  patterns  based  on  their  matches.
Furthermore,  the  possibility  to  design  data-specific  alphabets  makes
the method applicable  not only to highly diverse record sets  but  also
allows  each  researcher  to  analyze  the  (same)  data  with  an  idiosyn-
cratic language. We stress here an important departure from the more
traditional  techniques  of  forecasting  complex  systems.  Many  meth-
ods, like kernel regression, neural networks, or reinforcement learning
(see [1] for recent developments), estimate the future output of a sys-
tem as a function of a fixed number of past observations. In contrast,
the present approach does not restrict the “relevant past” to time win-
dows of fixed lengths. It is only important that the past state of the sys-
tem and the system’s response to that state frequently generate measur-
able outcomes with some, typically ex ante unknown, characteristics.
These  characteristics  are  encapsulated  as  patterns  in  a  suitable  lan-
guage and searched for in the encoded time series. 
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measurable outcomes with some, typically ex ante unknown,  charac-
teristics.  These  characteristics  are  encapsulated  as  patterns  in  a  suit-
able  language and searched for in the encoded time series. 

The  analysis  and  forecasting  of  multidimensional  data  is  at  the
center of research in, for example, finance, electrical engineering, theo-
retical  physics,  and  the  computer  sciences.  Various  mathematical
methods have been proposed for the description and analysis of inter-
dependencies in multivariate time series. An interested reader can find
a  recent  overview  of  these  methods  (including  Granger  causality,
directed  transfer  functions,  and  partial  directed  coherence)  in  [2].
In this work we are interested in an ex ante unknown type of multidi-
mensional relationship with possibly changing time frames; as such, a
less structured methodology is required. As a well established and ver-
satile  search  heuristic,  GAs  seem  to  be  a  promising  approach  for
generating pattern descriptors with predictive power. Although mathe-
matical foundations and properties of GAs are far from being settled,
there  is  some  evidence  that  GAs  might  become  a  generic  tool  for
universal  computation.  For  example,  the  work  by  Sapin  et  al.  [3,  4]
suggests that GAs have the potential to identify cellular automata that
support universal computation. 

This paper is organized as follows: in Section 2, we describe the en-
coding  process  for  multidimensional  time  series  and  define  patterns.
The GA for pattern evolution is  presented in Section 3.  In Section 4,
some related approaches are discussed. Section 5 contains an applica-
tion to financial time series data and Section 6 concludes. 

2. Time Series, Texts, and Patterns

Based  on  an  algorithm for  pattern  matching  in  character  strings  [5],
we  implement  a  deterministic  pattern  matching  machine  that
searches  for  occurrences  of patterns  in  multidimensional  time  series
x ‡ Ix1, … , xNM,  where  xi ‡ Ix1

i , … , xT
i M£  is  a  vector  of  T  observa-

tions. Before the search process takes place, the time series data is en-
coded as strings of letters from user-defined alphabets.  Alphabets are
sets composed of mathematical expressions (conditions) that yield the
Boolean value true or false when evaluated with respect to x. For ex-
ample,  the  condition  xt

i > xt-1
i  returns  true  (false)  at  all  dates  t  at

which  the  ith  time  series  increases  (weakly  decreases).  A  sequence  of
conditions is called an alphabet  if exactly one of them is true in each
period t. Hence, 
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9xt
3 > xt-1

3 , xt
3 § xt-1

3 =

is an example of an alphabet with two mutually exclusive conditions-
letters.  Given a multidimensional time series x  and a set of alphabets
9A1, … , AK=,  the  following  algorithm  generates  a  TäK  dimensional
text a ‡ Iat

kM :

for each date t ‡ 1, … , T
for each alphabet k ‡ 1, … , K

at
k ‡ the ordinal of a condition in Ak 

         that evaluates true with regard to x at t. 

Each column ak  in the text a represents the information in x that is
encoded through Ak.  A generic  element at

k  is  an integer  between one
and the number of conditions-letters in the alphabet Ak. We consider,
therefore, the matrix a as a multidimensional text recorded in natural
numbers. Note that the number of time series N  in x and the number
of alphabets K  will  usually differ.  The diagram in Figure 1 illustrates
the  encoding  of  a  fragment  of  five  observations  from  a  multidimen-
sional  time  series  x ‡ Ixt

1, … , xt
4M  according  to  two  alphabets

9A1, A2=  with  the  resulting  bidimensional  text  a ‡ Iat
1, at

2M  for
t ‡ 1, … , 5.

The choice of alphabets is entrusted to the expertise of the end user
of  the  system.  Generally,  the  letters  in  the  alphabets  will  test  condi-
tions  on  certain  indicators  that  are  deemed  relevant  for  the  subject
under study. The latter indicators may be derived from economic vari-
ables  in  early  warning  systems  for  the  prediction  of  financial  crises
[6,  7],  from  specific  protein  information  in  cancer detection  systems
[8,  9],  or  from  technical  trading  rules  [10–13].  The  almost  unre-
stricted freedom in the specification of alphabets is at the same time a
strength  and  a  weakness  of  the  present  approach.  On  the  one  hand,
its inherent flexibility allows for immediate and fine-tuned application
to  many  research  areas  but,  on  the  other,  it  burdens  the  researcher
with a tedious and ultimately open question of finding optimal alpha-
bets. In Section 5, we illustrate the types of alphabets that can be used
for encoding financial data. 
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Figure 1. The encoding of a time series that includes dates. The time series x1

contains the dates 5.12.2005 through 9.12.2005 that correspond to weekdays
1 through 5 (Monday through Friday).

Given a set of alphabets, a succinct description of a relevant aspect
of the underlying data is  expressed as a pattern. The latter is  defined
as  a  regular  expression  that  is  composed  of  letters,  operators,  and
parentheses. A letter is represented by a pair [condition-letter number
: alphabet] enclosed in square brackets. For example, @2 : 1D stands for
the  second  condition-letter  from  the  first  alphabet.  We  consider  the
three fundamental operators concatenation, or, and and.

† Concatenation,  as  used,  for  instance,  in  the pattern @2 : 1D @3 : 2D  where
the  second letter  from the  first  alphabet  is  followed by  the  third  letter
from the second alphabet.  Since the text a  consists  of  natural  numbers
and at

k ‡ i is interpreted as the ith  letter of the kth  alphabet at position
t,  this  pattern  matches  fragments  of  a,  starting  at  t,  such  that  at

1 ‡ 2
and at+1

2 ‡ 3. 

† Or (+) between two subpatterns P1  and P2  implies that there is a match
if and only if either P1  or P2  (or both) occurs. For example, the pattern
@3 : 1D @5 : 1D + @4 : 2D @4 : 2D  describes  fragments  of  the  text  a,  where
at

1 ‡ 3 is followed by at+1
1 ‡ 5 or where at

2 ‡ at+1
2 ‡ 4.  
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† And  (*)  between  two  subpatterns  P1  and  P2  implies  that  there  is  a
match if and only if both P1  and P2  occur simultaneously. The pattern
@3 : 1D * @4 : 2D @6 : 2D  detects,  therefore,  fragments of a  such that at

1 ‡ 3
and at

2 ‡ 4, at+1
2 ‡ 6.

Finally, parentheses induce the desired order of operators in the usual
way:

H@3 : 1D + @4 : 1DL * @5 : 2D ª Iat
1 ‡ 3 or at

1 ‡ 4M and at
2 ‡ 5,

@3 : 1D + H@4 : 1D * @5 : 2DL ª at
1 ‡ 3 or Iat

1 ‡ 4 and at
2 ‡ 5M.

A pattern that complies with the syntactic rules can be searched for in
the encoded text. The following algorithm searches for matches of the
pattern p in the text a between dates T1  and T2  (i.e., in all rows of a
between and including aT1

 and aT2
):

set t ‡ T1; 
while t § T2 repeat 
8 if a match of length k starts at date t then 
  record Ht, t + k - 1L in the set MpHT1, T2L; 
  set t ‡ t + 1; <. 

The outcome of the algorithm is exemplified in Figure 2, where the
fragments  of  the  text  a  that  are  matched by  the  pattern  specification
p ‡ @1 : 1D * H@2 : 2D + @4 : 2D @5 : 3DL  are  enclosed  in  rectangles  (the  first
rectangle  matches  @1 : 1D * @2 : 2D  while  the  second  matches
@1 : 1D * H@4 : 2D @5 : 3DL). 

Figure 2. Fragments of the text a that are matched by the pattern p.

The  matching  algorithm  itself  is  based  on  the  implementation
of the deterministic finite state automaton in [5] with important modi-
fications  to  account  for  multidimensional  texts  and  operators. After
running  the  matching  program,  the  set  MpHT1, T2L  contains  pairs
Hts, teL  with  the  start  and  end  dates  of  matches.  If  two  or  more
matches start on the same date, the match with the minimum length is
recorded.  If  two or  more  matches  end at  the  same time,  only  one  of
them is kept in MpHT1, T2L. 
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The  elements  of  MpHT1, T2L  will  be  typically  used  as  signals  of
something, say, a financial crisis, a share price increase, or a tissue de-
veloping cancer. In order to evaluate the predictive power of patterns,
the  user  must  define  a  fitness  function  that  maps  the  set  of  matches
into real numbers. For example, if the vector x1  contains stock prices
at consecutive decision times (i.e., days or hours), then the function 

‚
Hts,teLœMpHT1,T2L

ln
xte+1

1

xte
1

computes  the  accumulated  profit  that  is  made  when  the  stock  is
bought,  whenever a match ends in the decision period.  This  function
attains  high  values  for  patterns  that  consistently  signal  rising  stock
prices  after  match  occurrences.  It  can  be  interpreted,  therefore,  as  a
measure of  fitness  for  patterns that  act  as  buy signals.  An interesting
point to note is that the patterns are searched for in the encoded text
a, while the evaluation of the pattern fitness involves the original time
series x.

Besides  the  use  as  a  forecasting  instrument,  the  present  approach
may be applied as a language, in which quantitative theories are  for-
mulated.  Suppose,  for  instance,  that  a  researcher  conjectures  that  a
variable  x1  under  study  exceeds  a  desired  level  x 1  if  either  the  vari-
able  x2  assumes  values  below  x 2  or  the  variable  x3  assumes  values
above x 3. Then, after encoding x ‡ Ix1, x2, x3M in three alphabets,

Ak ‡ 9xt
k § xk, xt

k > xk=, k ‡ 1, .. , 3,

for  some  thresholds  xk,  the  latter  theory  can  be  phrased  in  terms  of
the pattern

@2 : 1D * H@1 : 2D + @2 : 3DL

and matched with the data.
In Section 3 we develop a GA for pattern evolution. The aim of the

GA is  to  create  a  population  of  patterns  that  are  optimized  with  re-
spect  to  a  fitness  function  over  a  training  set.  Obviously,  patterns
bred in training samples will  be reliable predictors only if  they retain
their predictive power in evaluation samples. 
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3. Genetic Algorithm

A GA is a search technique for finding approximate solutions to opti-
mization  and  search  problems.  GAs  are  typically  implemented  as  a
computer  simulation  in which  a  population  of  abstract  representa-
tions  (chromosomes)  of  candidate  solutions  to an optimization prob-
lem evolves toward better solutions. The present GA evolves patterns,
that  is,  regular  expressions  that  use  the  building  blocks  of  letters,
parentheses, and operators. By combining and modifying the best per-
forming parent patterns, new generations of offspring with increasing
average fitness are created. The present GA uses the three basic opera-
tions of crossover, mutation, and selection.

† Crossover (xover) extracts fragments from two parent patterns and com-
bines  them  by  means  of  fundamental  operators  into  a  valid  offspring
pattern as illustrated in the following example:
H@1 : 1D + @1 : 2DL@2 : 3D xover @2 : 1D @2 : 2D * @3 : 1D
Ø H@1 : 1D + @1 : 2DL + @3 : 1D.

In  this  example,  a  combination  of  H@1 : 1D + @1 : 2DL  and  @3 : 1D  is  inher-
ited by the offspring, while @2 : 3D and @2 : 1D @2 : 2D vanish.

† Mutation  changes a part  of  the pattern to a subpattern that matches a
fragment  randomly drawn from the  encoded text  a.  In  the  next  exam-
ple,  the expression in parentheses undergoes a mutation to the subpat-
tern  @1 : 2D * @3 : 3D  that  matches  at

2 ‡ 1,  at
3 ‡ 3,  a  randomly  retrieved

fragment of a: 
@1 : 1D @2 : 1D H@1 : 1D + @3 : 2DL Ømut @1 : 1D @2 : 1D H@1 : 2D * @3 : 3DL.

† Selection  picks  out  the  best-performing  patterns  (with  respect  to  the
user-defined fitness function). 

Note  that  the  result  of  the  breeding  process  is  a  regular  expression
that  complies  with  the  syntactic  rules  for  patterns.  The  structure  of
the main loop of the GA is depicted in Figure 3.
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Figure 3. The structure of the main loop of the pattern breeding GA.

4. Related Literature

Faced  with  abundant  literature  on  data  mining,  we  focus  on  three
closely  related  papers  in  order  to  emphasize  the  main  departures  of
the present work from the existing approaches.

Szpiro  [13]  implements  a  GA  that  permits  the  discovery  of  equa-
tions  of  the  data-generating  process  in  symbolic  form.  His  GA  uses
parts  of  equations,  constants,  and  the  basic  arithmetic operators  to
breed ever better formulas. Apart from furnishing a deeper understand-
ing  of  the  dynamics  of  a  process,  his  method  also  permits  global
predictions and forecasts. Unlike his search for a hidden relationship,
our GA does not work on raw data but on encoded information. This
approach allows for including predictors (e.g.,  adaptive moving aver-
ages) that are very unlikely or impossible to be developed by Szpiro’s
algorithm. Furthermore, his algorithm is restricted to uncovering func-
tional relationships whereas ours detects relevant patterns in data. 

Dempster [14] applies  a GA to evolve trading rules  that are based
on technical indicators. Potential rules are constructed as binary trees
in which the terminal nodes are indicators (e.g., adaptive moving aver-
ages,  relative  strength  index,  stochastics,  or  momentum  oscillators)
yielding  a  Boolean  signal  at  each  time  step,  and  the  nonterminal
nodes  are  the  Boolean  operators  AND,  OR,  and  XOR. The  result
of  this procedure  is  a  set  of  fittest  trading  rules  that  recommend  a
transaction (buy or sell) in each period. Unlike trading rules, patterns
are  not  constrained  to  emit  a  buy/sell  signal  at  each  time  step.  They
are more flexible in the sense that they can focus exclusively on infor-
mative sequences of observations. Furthermore, the algorithm in [14]
(and  other  commonly  used  algorithms  for  information  extraction)
work with data windows of fixed length. The GA described in Section
3  breeds  patterns  without  knowing  the  number  of  observations  that
they  match  at  the  time  of  the  design.  Hence,  it  is  able  to  create  pat-
terns that are able to detect regularities which emerge after specific his-
tories.  In  this  manner,  qualitatively  identical  phenomena  that  unfold
on  different  time  scales  (fractal  patterns)  or  stretch  over  time  win-
dows of variable length can be captured. 
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Finally,  Packard  [15]  develops  a  GA  that  evolves  a  population  of
conditions,  defined  on  an  unidimensional  independent  variable  x,  as
in the following example: 

C ‡ H20.1 § xtL Ô H30 § xt+1 § 40.5L Ô Hxt+2 § 30L.

Packard’s algorithm works on conditions, adjusting constants and op-
erators  in  order  to  obtain  good  predictors  for  a  dependent  variable.
This  approach  is  similar  in  spirit  to  evolving  expressions,  composed
of  conditions-letters,  as  described  in  Section  2.  Nevertheless,  an  at-
tempt to include elaborated indicators into Packard’s conditions leads
to intolerable runtimes as they must be evaluated during the matching
phase for each date t. Furthermore, an obvious extension of Packard’s
GA to multidimensional time series suffers severely from the curse of
dimensionality.

5. An Application

5.1 Data and Alphabets
As an application, we tested the predictive power of patterns on finan-
cial time series data. We used the daily exchange rates for several cur-
rency pairs. The data was downloaded from
http://www.forexrate.co.uk/forexhistoricaldata.php.

For each pair and day t, the vector xt ‡ Ixt
i Mi‡1, … , 5 contained

xt
1 ‡ date, xt

2 ‡ open, xt
3 ‡ close, xt

4 ‡ min, xt
5 ‡ max,

that is, the current date and the opening, closing, maximum, and mini-
mum exchange rates during this day. We used 1201 weekday observa-
tions  from August  25,  2003 through April  12,  2008 (hence,  x ‡ Ixt

i M

had  the  dimensions  1201ä5).  We  encoded  x  according  to  six  alpha-
bets  obtaining  a  text  a  that  is  six-dimensional  and  1200  characters
long:
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A1 ‡ 9xt
1 ‡ Monday, … , xt

1 ‡ Friday=,

A2 ‡
xt

3

xt-1
3

< 0.998, 0.998 §
xt

3

xt-1
3

< 0.9985, .. ,
xt

3

xt-1
3

¥ 1.002 ,

A3 ‡
xt

3

xt
4
< 1.0005, 1.0005 §

xt
3

xt
4
< 1.001, .. ,

xt
3

xt
4
¥ 1.005 ,

A4 ‡
xt

5

xt
3
< 1.0005, 1.0005 §

xt
5

xt
3
< 1.001, .. ,

xt
5

xt
3
¥ 1.005 ,

A5 ‡
xt

3

xt
2
< 0.996, 0.996 <

xt
3

xt
2
§ 0.997 , .. ,

xt
3

xt
2
¥ 1.004 ,

A6 ‡
xt

5

xt
4
< 1.0005, 1.0005 §

xt
5

xt
4
< 1.001, .. ,

xt
5

xt
4
¥ 1.005 .

All alphabets except A1  were composed of nine conditions-letters and
all of them used only past and present information in x. In particular,
each  row  at  of  the  text  was  generated  by  accessing  information  in
xt-1  and xt  only. The requirement of using only available information
is, obviously, essential when we test the predictive power of patterns.

5.2 Pattern Evaluation and the Fitness Function
In order to create effective patterns by means of a GA in-sample, and
to assess their predictive power out-of-sample, a suitable definition of
the  fitness  function  is  crucial.  The  fitness  function  that  we  employed
was  designed  to  measure  the  difference  between  sample  means  for
two mutually exclusive and collectively exhaustive sets: the set of end-
dates  of  matches and its  complement.  Specifically,  for  each pattern p
that  was  matched  in  the  time  window  @T1, T2D,  we  partitioned  this
window into two groups: the subset M of end-dates of p-matches and
its  complement  NM.  In  each  subset,  we  computed  the  sample  mean
and the sample variance for the next day log-returns,

xm ‡ ‚tœM

ln
xt+1

3

xt+1
2

nm
,

xn m ‡ ‚tœNM

ln
xt+1

3

xt+1
2

nn m
,
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sm
2 ‡ ‚tœM

ln
xt+1

3

xt+1
2

- xm

2

nm - 1
,

sn m
2 = ‚tœNM

ln
xt+1

3

xt+1
2

- xnm

2

nn m - 1
,

where nm ‡ †M§ and nn m ‡ †NM§.
For these values, we calculated the difference-of-means statistic,

treturn ‡
xm - xn m

sm
2 ë nm + sn m

2 ë nn m

,

and  used  it  as  both  the  fitness  function  for  pattern  breeding  in  the
training  set  and  as  an  estimate  of  predictive  power  in  the  validation
set. The fitness function favored patterns indicating relatively high ex-
pected  returns  for  the  next  day.  Should  the  evolved  patterns  retain
high fitness out-of-sample, our approach would be a (statistically) ef-
fective forecasting instrument.

We applied the same procedure to define the performance measure
trange  to  evaluate  patterns  with  respect  to  the  next-day  log difference
in  intraday  extreme  (min  and  max)  values  lnIxt+1

5 ë xt+1
4 M.  Parkinson

[16] proposed the difference in extreme values as a proxy for volatil-
ity. We therefore considered patterns evolved with trange  as indicators
of high volatility. 

5.3 Genetic Algorithm
After  encoding  the  data  and  defining  the  fitness  function,  we  run  a
number  of  GA  experiments.  The  main  loop  of  each  GA  experiment
(see Figure 3) evolved a population of N ‡ 100 patterns, out of which
the elite of K ‡ 15 fittest survived each round and were selected to re-
produce. Each breeding loop was repeated 50 000 times using a train-
ing window of 800 observations to compute the fitness. Subsequently,
the single best performing pattern of the breeding stage was tested in
an out-of-sample (validation) window of 400 observations. We experi-
mented with different parameter values for the GA operators without,
however, detecting a significant impact on the results. Furthermore, in
order to avoid overfitting in the training set, we allowed only patterns
with at least 10 matches per 100 observations to survive. 
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5.4 Results
Table  1  summarizes  the  results  of  the  GA  experiment,  which  were
computed  as  averages  over  10  runs.  Broadly  speaking,  Table  1  con-
firms  the  well-known  stylized  facts  that  the  returns  are  not  pre-
dictable but the volatility is (see [17] for a survey). Specifically, given
the  high  numbers  of  matches  in  validation  sets  (Table  1),  we  could
rely on the central limit theorem and assume that the statistic treturn  is
standard normal under the Null of equal means in the subsets M and
NM of the validation set.  As the third column in Table 1 shows, the
Null could not be rejected at any reasonable significance level for any
currency pair. In other words, the best performing pattern in the train-
ing  set  (with  the  fitness  reported  in  the  second  column)  failed  to  de-
tect  matches  in  the  validation  set  that  were  followed  by  significantly
higher log returns for the next day. 

On  the  other  hand,  the  Null  was  rejected  at  least  at  the  1% and,
usually,  much lower,  significance level  when tested for the log differ-
ence in extreme values with the trange statistic. Only for the pair GBP /
USD in the validation set did we obtain the P-value H2.34L º 1%. This
is probably due to the relatively small number of matches (45) in this
set.  The  next  largest  P-value  in  the  validation  set  is  of  order  10-6

(trange ‡ 4.36 for GBP / CHF).
The  winning  pattern  in  the  training  set  detected  effectively  next-

day  high  volatility  also  out-of-sample  (the  last  column  in  Table  1).
Our approach was, therefore, successful at creating (statistically) reli-
able predictors of volatility. 

Currencies treturn training
treturn

validation trange training
trange

validation

GBP ê EUR 5.23 H220L -1.09 H107L 7.14 H202L 5.04 H97L

GBP ê USD 5.34 H212L 0.31 H132L 7.20 H172L 2.34 H45L

GBP ê CHF 5.90 H163L -0.45 H71L 7.02 H190L 4.36 H92L

USD ê EUR 5.66 H188L 0.77 H163L 7.35 H200L 4.72 H89L

Table 1. In-sample  (training)  and  out-of-sample  (validation)  t-statistics  for
one-day-ahead  prediction  of  returns  ln Ixt+1

3 ë xt+1
2 M  (treturn)  and  volatility

ln Ixt+1
5 ë xt+1

4 M (trange). In parentheses, the number of matches.

To compare  our  procedure  with a  standard technique of  volatility
forecasting,  we  tested  the  forecasts  generated  by  the  exponentially
weighted moving average (EWMA). EWMA is widely used in practice
due  to  its  simplicity  and  its  reported  superiority  over  more  sophisti-
cated  models  [18].  The  EWMA  specifies  the  next  period’s  volatility
vt+1 as a weighted average of the current modeled volatility vt  and the
current  observed  volatility, here  measured  by  the  price  range
ln Ixt

5 ë xt
4M: 
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5 ë xt
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vt+1 ‡ a vt + H1 - aL ln
xt

5

xt
4

.

For the same data as in the GA experiment, we estimated the EWMA
parameter a in the training window of 800 observations by the maxi-
mum likelihood method and specified the threshold tv of “high volatil-
ity”. This threshold was set equal to the third quartile of the empirical
distribution  of  observed  volatilities  in  order  to  create  a  similar  num-
ber  of  high  volatility  days  as  in  the  GA experiment,  that  is,  roughly
1/4  of  all  observations  in  the  sample.  Using  the  given  specifications,
we partitioned the validation set of 400 observations into two groups:
the  subset  M  of  high  volatility  forecasts,  vt+1 > tv,  and  its  comple-
ment  NM.  For  each  subset,  we  computed  the  sample  mean  and  the
sample  variance  of  observed  volatilities  lnIxt+1

5 ë xt+1
4 M  and  calculated

the  difference-of-means  statistic.  The  results,  reported  in  Table  2,
indicate that EWMA forecasts of high volatility are statistically signifi-
cant,  although  (with  the  exception  of  the  GBP  /  USD  pair)  the
t-statistics lie below the values from the GA experiment (Table 1). In
this  simple example, the parsimony of the EWMA approach may out-
weigh  its  slightly  worse  performance  as  compared  to  the  elaborate
GA  procedure.  The  latter  procedure,  however,  is  designed  to  detect
complicated multidimensional relationships where its full strength can
come to the fore.

Currencies trange training trange validation

GBP ê EUR 6.27 H202L 4.81 H97L

GBP ê USD 5.80 H172L 3.73 H45L

GBP ê CHF 5.22 H190L 3.76 H92L

USD ê EUR 6.05 H200L 4.28 H89L

Table 2. In-sample  (training)  and  out-of-sample  (validation)  t-statistics  for
one-day-ahead  EWMA forecasts.  The  forecasts  were  computed  with  the  ML
estimate à ‡ 0.94. In parentheses, the number of “high volatility” days.

6. Conclusions

Based  on  an  algorithm for  pattern  matching  in  character  strings,  we
implement  a  pattern-matching  machine  that  searches  for  occurrences
of specified patterns in multidimensional time series. Before the search
process  takes  place,  the  time  series  are  encoded  as  strings  of  letters
from  user-defined  alphabets.  The  preprocessing  of  the  raw  data  has
conceptual  advantages  and  also  speeds up  the  matching  phase  deci-
sively. Since the evaluation of patterns is based on their matches, an ef-
ficient matching algorithm is essential for creating optimal patterns by
means of a genetic algorithm (GA). The GA combines parent patterns
in order to breed offspring (randomly modified by mutations) that are
ever  better  predictors.  In  an  application  to  financial  time  series,  we
show  that  the  presented  GA  has  the  potential  to  produce  patterns
with significant out-of-sample predictive power.
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