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A  computational  abstract  machine  based  on  two  operations,  referenc-
ing  and  bit  copying,  is  presented.  These  operations  are  sufficient  for
carrying  out  any  computation  and  can  be  used  as  the  primitives  for  a
Turing-complete  programming  language.  The  interesting  point  is  that
computations can be performed without logic operations such as AND or
OR.  The compiler and emulator of this language with sample programs
are available on the internet.

1. Introduction

In a quest  to build an imperative language with the smallest  possible
number  of  instructions,  several  one  instruction  set  computer  (OISC)
languages have been invented. One example, the ultimate RISC archi-
tecture  [1],  utilizes  the  single  instruction  copy  memory  to  memory.
Complex behavior of such a machine is achieved by mapping the ma-
chine  registers  onto  memory  cells.  For  example,  a  memory  cell  with
the address 0 is the instruction pointer, so copying to this address  ef-
fectively  realizes  an  unconditional  jump.  Arithmetic  operations  are
also achieved by using special registers in memory that perform more
complex operations at the hardware level.

Another example, Subleq [2], does not have memory mapped regis-
ters.  Its  computational  power  is  based  on  program  self-modification
and a sufficiently complex instruction set. The abstract machine is de-
fined as a process working on an infinite array of memory cells  with
each  instruction  having  three  operands.  The  processor  reads  three
operands from the memory, subsequent cells A B C, subtracts the value
of  the  cell  addressed  by  A  from the  value  of  the  cell  addressed  by  B,
and  stores  the  result  in  the  same  cell  addressed  by  B.  If  the  result  is
less than or equal to zero,  the execution jumps to the address C,  and
the  processor  reads  the  next  instruction  from  there;  otherwise  the
next  three  operands  are  read  from memory.  This  language  is  proven
to  be  Turing-complete.  There  are  a  few  variations  of  this  language
that are similar in principle. A compiler from a simple C-like language
has been written to compile programs into Subleq processor code [3].
Attempts to reduce the complexity of the atomic operation have been
undertaken. For example, Rojas [4] proves that conditional branching
is  not  necessary  for  universal  computation  given  the  ability  of  code
self-modification. Complex Systems, 19 © 2011 Complex Systems Publications, Inc. 

https://doi.org/10.25088/ComplexSystems.19.3.263



Another example, Subleq [2], does not have memory mapped regis-
ters.  Its  computational  power  is  based  on  program  self-modification
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next  three  operands  are  read  from memory.  This  language  is  proven
to  be  Turing-complete.  There  are  a  few  variations  of  this  language
that are similar in principle. A compiler from a simple C-like language
has been written to compile programs into Subleq processor code [3].
Attempts to reduce the complexity of the atomic operation have been
undertaken. For example, Rojas [4] proves that conditional branching
is  not  necessary  for  universal  computation  given  the  ability  of  code
self-modification.

Although OISC languages have just one instruction, the instruction
does  a  number  of  manipulations  or  computations  under  the  hood.
Hence,  there  is  a  question:  which  language  has  the  simplest  instruc-
tion and is it possible to make a language with a simpler instruction?

Another  interesting  question  relates  to  logic  operations.  It  is  com-
monly  known  that  classical  computations  are  usually  done  using  bit
logic  operations:  AND,  OR,  XOR,  and NOT.  These operations are neither
a  complete  set  nor  a  minimal  set  required  for  computation.  OR  and
XOR can easily be expressed via AND and NOT and vice versa. However,
it  is  commonly  assumed  that  at  least  AND  or  OR-like  operations  are
needed  to  make  real  computations.  It  is  not  possible  to  combine  OR
and XOR operations to erase a single bit. Therefore, they are unable to
produce classical computations. Hence, a question arises: is it possible
to  make  programmed  computation  without  using  logical  operations
like AND and OR?

2. Referencing as a Computational Operation

Surprisingly,  OR  and  XOR  reversible  operations  can  produce  irre-
versible  results  if  they  are  used  in  combination  with  referencing.  In
Table 1 the first row has the initial three bits. The second row has the
same bits  with one of them inverted (NOT  operation applied).  The in-
verted bit is referenced by all three, as the index of the bit equal to its
binary representation taken modulo 3.  It  can be seen that  two initial
states (001 and 010) produce the same final result (011), making this
entire operation irreversible. 

000 001 010 011 100 101 110 111

100 011 011 111 110 100 010 101

Table 1.

A  machine,  similar  to  register  machines  described  by  S.  Wolfram
[5], can be realized by using a continuous process of bit inversion on
the  same  set  of  bits.  For  example,  a  3-bit  machine  produces  a  se-
quence (000) (100) (110) (010) (011) (111) (101) (100) ….

Figure  1  shows  Wolfram diagrams  for  2-,  3-,  4-,  5-,  6-,  and  7-bit
machines.  On  the  right  side  of  each  diagram  bits  are  represented  as
squares  with  dark  for  1  and  white  for  0.  On  the  left  side,  a  small
square  shows  the  interpreted  value  of  the  bits—the  address  of  the
next bit to be inverted. The address is calculated as the binary represen-
tation of some integer taken modulo the number of bits. 
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Figure 1.

Taking the binary value and modulo may seem like complex opera-
tions. However, there is a simple model simulating such behavior. Al-
low bits to be positioned in a circle with an arrow pointing to any bit.
Each bit is assigned a rule for how to rotate the arrow if its value is 1.
At each step the arrow rotates according to the rules and the values of
all  bits,  and at  the end of  the step the bit  pointed to by the arrow is
inverted.

Figure 2 shows the diagrams for 17-, 18-, and 19-bit machines simi-
lar to those shown in Figure 1. The picture is scaled 1 to 10 in the ver-
tical direction and 1000 steps are shown.

Table  2  shows  the  size  of  the  loop  (the  size  of  the  pattern  on  the
diagram) that the machine eventually enters when started with the ini-
tial zero values of all bits. Bigger loop sizes correspond to more com-
plex behavior of the model.
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Figure 2.

Bits Loop Size Bits Loop Size Bits Loop Size

3 6 13 66 23 18 812

4 2 14 50 24 6

5 8 15 162 25 48 000

6 6 16 2 26 544

7 50 17 346 27 54

8 2 18 18 28 62

9 18 19 1700 29 128 116

10 10 20 10 30 30

11 112 21 12 31 635 908

12 6 22 118 32 2

Table 2.

In another example, shown in Table 3, the second row has one bit
modified by the formula 

(p[A] XOR p[B]) Ø p[A], 
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where A is the value of the first two bits, B is the value of the last two
bits, and p[] is the bit taken by the index.

0000 0001 0010 0011 0100 0101 0110

0000 0001 1010 1011 1100 0001 …

Table 3.

The operations applied to bits are reversible, but referencing makes
the  whole  process  irreversible.  Even  if  it  feels  like  this  process  could
do calculations, it is still difficult to bring it into play to make a frame-
work that is able to do desirable computations.

3. Bit Copying Language

It turns out that by taking the converse approach—that is, to combine
a  bit  copying  operation,  which  is  irreversible,  with  referencing—the
programmable computation is possible at the bit level.

A bit copying instruction always erases one bit. On first inspection
it  would seem that the entire amount of information in the system is
being forever reduced until no changes are made. However, this is not
the case. For example, in the process forever do (a Ø b, c Ø a, b Ø c),
where a,  b,  and c  are bits, and arrow means copy, the bits will circle
in  the  loop  forever.  This  would  be  interpreted  as  a  steady  but  not
static  state.  To do something more interesting,  let  us add a meaning-
ful  representation to each collection of bits  by associating an address
with each.

Let  us  define  the  imperative  language,  in  which  the  abstract  ma-
chine operates on an array of memory bits addressed from 0. Bits are
grouped into words  of a particular size (memory cells). For examples
of 8-bit words see Table 4.

Memory 01010101 00001111 10101010 11001100 00110011 …

Address 0 8 16 24 32 40

Table 4.

Each  instruction  consists  of  three  operands:  A  B  C,  where  each
operand  is  one  word.  The  instruction  copies  the  bit  addressed  by  A
into the bit addressed by B, then jumps the process control to address
C. The operand C is read after the bit copying is done. This allows the
instruction to be self-modifiable (even though just one bit can be modi-
fied at a single point in time).
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Since each word represents a bit  address in the memory, the exact
way of address interpretation can be left undefined without sacrificing
the concept. In this implementation, however, it is assumed to be little-
endian binary bit representation. 

Another undefined feature that is up to the implementation is how
to consider grouping memory bits into words: physical—all words are
aligned  on  memory  cell  size  address,  or  logical—words  are  grouped
counting from the current address.  In the second case,  the operand C
is  allowed to specify an address of any bit,  not necessarily aligned to
the memory cell.

This  sole  instruction  does  not  do  any  more  than  copy  a  bit  from
one place to another,  and yet this  simple single instruction is  enough
to  make  the  language  able  to  execute  a  preprogrammed  sequence  of
operations.  The  abstract  machine  obviously  does  something  more
than  copying  bits:  it  references  bits  and  transfers  the  process  control
to  the  next  address  of  execution.  However,  this  work  may  not  need
logic  operations  AND  or  OR,  and  is  done  outside  of  the  execution
model, which means it can be emulated by the same bit copying pro-
cess. 

4. Assembly

To  simplify  the  presentation  of  the  language  instruction  set,  we  use
the  following  assembly  notation.  Each  word  is  denoted  as  L:V'x,
where  L  is  an  optional  label  serving  as  the  address  of  this  memory
cell,  V  is  the  value  of  this  memory,  and  x  is  the  optional  bit  offset
within the word (memory cell). Each instruction is written on a sepa-
rate line. For example:

A'0 B'1 A
A:18 B:7 0

gives  two  instructions.  The  first  instruction  copies  the  lowest  bit  of
cell A (whose value is 18) into the second bit of cell B (whose value is
7), then jumps to the instruction addressed by A, which is the next in-
struction.  After  the  first  instruction is  executed,  the  value  of  cell  B  is
changed to 5. For example, in 8-bit  word memory these two instruc-
tions are

24 33 24 18 7 0.

If the bit offset is omitted, it is considered to be 0. So, A is the same as
A'0.

If  the  operand  C  is  absent,  it  is  assumed  to  have  the  value  of  the
next cell address, that is,

A B

is the same as
A B C
C: …
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which is the same as
A B ?

Question mark (?) is the address of the next memory cell, that is, the
address of the first bit of the following word. Let us denote (n?) as a
multiple to cell size counted from the current position. So, (0?) means
the address of this position; (1?) is the same as (?) and is the next cell;
(2?) is one after the next cell; and (-2?) is one before the previous cell.
For example, the instruction

A B -2?

is the same as
C:A B C

and is an infinite loop (assuming that it does not modify C), as the bit
referenced by A is copied to the bit referenced by B and the control is
transferred  to  the  address  of  the  cell  C:A,  which  is  the  beginning  of
the original instruction. Remember that A is the value and C is the ad-
dress of C:A.

Given an assembly text, we also need an environment to run a pro-
gram that  is  written  in  this  language.  Therefore  two steps  are  neces-
sary: (1) Compile the text into binary code as an array of bits to form
instructions. (2) Execute the binary coded instructions on the abstract
machine.  A  program  called  an  assembler  does  the  first  step,  and  an
emulator can do the second.

5. Macro Commands

To make a program description shorter and more readable, let us de-
fine a macro substitution mechanism as in the following example.

.copy A B
…
.def copy X Y
X’0 Y’0
X’1 Y’1
…
X’w Y’w
.end

The first line is the macro command that is substituted by the macro
definition  body  starting  with  ".def"  and  ending  with  ".end".  The
name after ".def" becomes the name of the macro and all subsequent
names are formal arguments to it.  After macro substitution, the code
becomes:

A’0 B’0
A’1 B’1
…
A’w B’w
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Here, w  is  the index of the highest bit  and is equal to the size of the
memory cell minus one. Let us denote the word size as W, W = w + 1.

Two other useful macro definitions are shift and roll. shiftL shifts
bits in the memory cell by 1 from lower to higher, and the lowest bit
is  set  to  0.  It  is  the  same as  arithmetic  multiplication  by  2,  or  the  C
programming language operation "<<=1". 

.def shiftL X : ZERO
X'(w-1) X'w
X'(w-2) X'(w-1)
…
X'1 X'2
X'0 X'1
ZERO X
.end

ZERO is defined at some place as ZERO:0. It appears after the colon at
the end of the macro definition argument list to signify that this name
is  defined  outside  of  the  macro  definition.  This  is  necessary  because
the  assembler  tries  to  resolve  all  names  within  the  body  of  a  macro
definition  or  to  tie  them to  the  formal  arguments.  Note  that  the  last
instruction copies the lower bit of the ZERO memory cell to the lower
bit of X.

shiftR  is  the  same as  shiftL  but  works  in  the  opposite  direction
and  corresponds  to  integer  division  by  2,  or  the  C  shift  operator
">>=1".

Roll  macros  are  similar  to  shift  macros  with  the  exception  that
they copy the end bit back to the front. They can be defined in terms
of the shift macro definitions.

.def rollR X : TMP
X TMP
.shiftR X
TMP X'w
.end

.def rollL X : TMP
X'w TMP
.shiftL X
TMP X
.end

The  TMP  memory  cell  is  a  placeholder  and  is  defined  in  an  external
library.

The macros copy, shift, and roll are useful, but lack the logic to be
able to perform useful calculations.

6. Conditional Jump

Consider the following code.
.def jump01 A b
A'b 2?'k
0 J'0
A'b 2?'k
1 J'1
A'b 2?'k
2 J'2
…
A'b 2?'k
(w-2) J'(w-2)
A'b 2?'k
(w-1) J'(w-1)
A'b 2?'k
w J'w J:0
.end
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.def jump01 A b
A'b 2?'k
0 J'0
A'b 2?'k
1 J'1
A'b 2?'k
2 J'2
…
A'b 2?'k
(w-2) J'(w-2)
A'b 2?'k
(w-1) J'(w-1)
A'b 2?'k
w J'w J:0
.end

The offset  k  is  defined such that 2k = W.  Since a word is  an address
of  a  bit  in  the  memory,  there  are  k  bits  corresponding  to  the  offset
within  a  word.  The  rest  of  the  word’s  bits  specify  the  address  of  a
memory cell. For example, for a 32-bit word k is 5 because modifica-
tions  in  the  sixth  bit  and  higher  change  the  address  of  the  memory
cell, but not the offset inside the memory cell. Note that when writing
to the offset, k updates the sixth bit if k = 5.

The first line moves bit b of memory cell A to the kth bit of the first
operand of the next instruction. After this is done, the first operand of
the next instruction is zero or equal to W. The next instruction copies
the value of the first bit of the cell  addressed as either 0 or W  to the
cell  labeled  J—which  is  the  last  memory  cell  in  this  list  of  instruc-
tions, and which is the address the process control will go to after the
last  instruction  is  executed.  The  subsequent  lines  [(A'b  2?'k)(1
J'1)] copy the second bit to cell J, and so on.

When the last  bit  is  copied,  cell  J  holds the same value as the cell
with address 0 (the first word in the memory) or the cell with address
W  (the second word in the memory) depending on whether A'b was 0
or 1.

By marking the first two memory cells in the program as special, in
the sense that they can be used only for this operation, it is possible to
write a generic test for a particular bit.

Z0:0 Z1:0
.def test A b B0 B1 : Z0 Z1
.copy L0 Z0
.copy L1 Z1
.jump01 A b
L0:B0 L1:B1
.end

This code defines a macro that tests bit b of memory cell A and jumps
to either address B0 or B1 if the bit is 0 or 1 correspondingly.
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Testing  a  bit  is  a  core  requirement  of  all  the  higher-level
computations  described  later.  In  most  of  these  cases  testing  a  bit
involves checking the lowest or highest bit in the word:

.def testL A B0 B1

.test A 0 B0 B1

.end

.def testH A B0 B1

.test A w B0 B1

.end

7. Arithmetic

One  of  the  most  basic  operations,  which  will  be  required  for  defini-
tions  of  other  more  complex  constructions,  is  the  increment  opera-
tion.  To  increment  a  memory  cell  A,  the  roll,  shift,  and  test  macros
can be combined in the following way.

        .copy ONE ctr

begin:  .testL A test0 test1

test0:  ONE A rollback
test1:  ZERO A
        .testH ctr next rollback

next:   .shiftL ctr
        .rollR A
        0 0 begin

rollback: .testL ctr roll End

roll:   .shiftR ctr
        .rollL A
        0 0 rollback

        End:0 0
        …
        ctr:0 0

The  first  line  initializes  counter  ctr  to  1.  The  lowest  bit  of  the
operand A is swapped, and the operand and counter are rolled until ei-
ther the operand bit is zero or the counter bit 1 reaches the highest bit
position, which means that all  w  bits of the operand were processed.
After this the operand can be rolled back to the original bit position.

In  the  code  ZERO  and  ONE  are  defined  as  ZERO:0  and  ONE:1.  The
instruction  0  0  label  is  used  as  an  unconditional  jump  to  address
label.  It  copies  the  first  bit  in  the  memory  to  itself,  and  does  not
change its value.

Addition  can  be  defined  in  a  similar  way  with  the  exception  that
there are four operands. These are in order: first number, second num-
ber,  result,  and the  adder  (for  passing  over  an extra  bit).  The  lowest
bits of the adder and first and second numbers are added, giving two
bits,  one  of  which  goes  to  the  lowest  bit  of  the  result,  and the  other
goes to the second bit of the adder. Then, all four operands are rolled
and  the  process  continues.  Code  for  the  addition  command  add  is
given in Appendix B.1.
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Addition  can  be  defined  in  a  similar  way  with  the  exception  that
there are four operands. These are in order: first number, second num-
ber,  result,  and the  adder  (for  passing  over  an extra  bit).  The  lowest
bits of the adder and first and second numbers are added, giving two
bits,  one  of  which  goes  to  the  lowest  bit  of  the  result,  and the  other
goes to the second bit of the adder. Then, all four operands are rolled
and  the  process  continues.  Code  for  the  addition  command  add  is
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Subtraction can simply be defined as
.def sub X Y Z
.inv Y
.inc Y
.add X Y Z
.end

where inc is increment, add is addition (Z=X+Y), and inv is the inver-
sion operation, which simply inverts all bits in a memory cell. The in-
version operation code is  simpler  than increment  and is  given in  Ap-
pendix B.2.

8. Process Control and Pointers

The following  definitions  can  be  used  to  test  for  particular  values  of
variables.

.def ifeq X Y yes no

.sub X Y Z

.ifzero Z yes no
Z:0 0
.end

.def ifzero Z yes no

.testH Z cont no
cont: .copy Z A
.inv A
.inc A
.testH A yes no
A:0 0
.end

.def iflt A B yes no

.sub A B Z

.testH Z no yes
Z:0 0
.end

The first macro ifeq checks if both arguments are equal to each other
by  testing  the  result  of  the  subtraction.  The  second  macro  ifzero
tests whether its argument is equal to zero. This is done by testing the
highest bit (negative value); if it is zero then negate the argument (in a
simple  binary  signed  representation  inversion  and  increment  produce
the same result  as  negation)  and test  the highest  bit  again.  Note that
the  argument  is  copied  before  it  is  negated  because  it  should  not  be
changed. The third macro iflt  tests if the first argument is less than
the second.
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The first macro ifeq checks if both arguments are equal to each other
by  testing  the  result  of  the  subtraction.  The  second  macro  ifzero
tests whether its argument is equal to zero. This is done by testing the
highest bit (negative value); if it is zero then negate the argument (in a
simple  binary  signed  representation  inversion  and  increment  produce
the same result  as  negation)  and test  the highest  bit  again.  Note that
the  argument  is  copied  before  it  is  negated  because  it  should  not  be
changed. The third macro iflt  tests if the first argument is less than
the second.

To  write  the  classical  “Hello,  World!”  program  by  iterating  a
pointer over an array of cells, the tricky operation of pointer derefer-
encing needs to be defined. Consider the following program.

        Z0:0 Z1:0

start:  .deref p X
        .testH X print -1
print:  .out X
        .add p W p
        0 0 start

        p:H X:0
        H:72 101 108
        108 111 44
        32 87 111
        114 108 100
        33 10 -1

The  label  H  is  the  address  of  a  string  holding  the  ASCII  code  for
“Hello, World!” followed by the end-of-line sentinel. p is a pointer—
a cell initialized with the address of the string.

The first instruction does not do anything since it copies the bit ad-
dressed 0 to itself. It is necessary because the conditional jump (which
uses the first two words of the memory) is part of other macro com-
mands. The next command dereferences p by copying the value of the
cell,  whose  address  is  stored  in  p,  into  cell  X  (this  operation  is
discussed below). Check if X is negative. If it is, go to the address (-1),
otherwise  continue  execution  with  the  next  line.  The  address  (-1)  is
special because we assume that the program halts if control is passed
to it. In fact, this is similar to how halt is defined in other OISC lan-
guages, for example, Subleq [2]. The next line prints the ASCII charac-
ter  in  cell  X.  (The  specific  implementation  of  printing  is  discussed  in
Section 10.)  If  X  was  not  negative,  the  pointer  p  has  not  reached the
end of the array and still points to a valid array element. The pointer
is  incremented  by  the  size  of  the  memory  cell  and  this  process  is
continued until the halting instruction is executed.

It is possible to copy a memory cell referenced by another memory
cell  by  setting  up  an  iterative  instruction  with  the  source  and  target
addresses.  The  instruction  is  repeated  W  times,  incrementing  the
addresses  each  time  until  the  whole  word  is  copied.  An  example  is
given in the following code.
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        .copy ONE ctr
        .copy P A
        .copy L B

begin:  A:0 B:0
        .testH ctr next End

next:   .shiftL ctr
        .inc A
        .inc B
        0 0 begin

        End: …
        L:X ctr:0

This block of code performs the same task as the C programming lan-
guage statement X=*P.  The counter is prepared as in the previous ex-
amples.  The  pointer  value  is  copied  to  the  first  operand of  the  itera-
tive instruction (A:0 B:0), then the address of the result cell is copied
into the second operand of the iterative instruction. Now, the iterative
instruction is executed W  times with each execution incrementing the
addresses—the values of the operands.

This approach can be used for copying a value into a memory cell
pointed  to  by  another  pointer.  It  is  just  a  matter  of  swapping  the  A
and B operands in the iterative instruction.

9. More Arithmetic

Multiplication  is  quite  simple  once  shift  and  addition  are  imple-
mented. (The algorithm does not properly handle negative values; the
sacrifice is made for the sake of simplicity.)

        .copy ZERO Z

begin:  .ifzero X End L1
L1:     .testL X next L2
L2:     .add Z Y Z
next:   .shiftR X
        .shiftL Y
        0 0 begin

        End:0 0

This  code  shifts  the  first  multiplier  to  the  left  and  the  second  multi-
plier  to  the  right  while  at  the  same  time  accumulating  the  result  by
adding the second multiplier if  the lowest bit of the first multiplier is
1. This algorithm is expressed in a simple formula:
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X µ Y =
X ê 2 µ 2 Y, if X even;
HX - 1L ê 2 µ 2 Y + Y, if X odd.

Division is slightly more complex. Given two numbers X and Y, in-
crease  Y  by  2  until  the  next  increase  gives  Y  greater  than  X.  At  the
same time, increase a variable Z by 2, which is initialized to 1. Now,
Z  holds part of the result of division (the rest is to be calculated fur-
ther using X - Y) and Y, which is done iteratively accumulating all Z.
At  the  last  step  when  X < Y,  X  is  the  remainder.  The  code  for  divi-
sion is presented in Appendix B.3.

The  division  operation  is  imperative  for  printing  numbers  as  deci-
mal strings.  The algorithm implementing this  divides the value by 10
and stores the remainders into an array. When the value becomes 0, it
iterates backward over the array, printing numbers in ASCII code.

        .testH X begin negate

negate: .inv X
        .inc X
        .out minus

begin:  .div X ten X Z
        .toref Z p
        .add p W p
        .ifzero X print begin

print:  .sub p W p
        .deref p Z
        .add Z d0 Z
        .out Z
        .ifeq p q End print

        End:0 0
        …
        Z:0 d0:48 ten:10
        p:A q:A minus:45
        A:0 0 0
        …

The first portion, labeled negate, checks whether the argument is less
than  0.  If  so,  then  the  argument  is  negated  and  the  minus  sign  is
printed.  The  second  section  repeatedly  divides  the  argument  and
stores  the  results  into  the  array  A  by  a  dereferencing  operation
through the pointer  p.  The command div  divides X  by 10,  stores  the
result  back  to  X,  and  the  remainder  to  Z.  The  following  command
toref writes the value of Z into the cell pointed to by p. This process
continues  until  X  is  zero.  In  the  next  portion,  marked  by  the  label
print, the pointer p runs back until it is equal to q, which is  initial-
ized  to  A,  which  is  the  beginning  of  the  array.  The  command  deref
copies  the  value  from the  array  to  Z.  Then,  the  ASCII  code  (48)  for
character  0  is  added  and  the  byte  is  printed.  (It  is  assumed  that  the
memory cell is a byte not less than eight bits.)
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The first portion, labeled negate, checks whether the argument is less
than  0.  If  so,  then  the  argument  is  negated  and  the  minus  sign  is
printed.  The  second  section  repeatedly  divides  the  argument  and
stores  the  results  into  the  array  A  by  a  dereferencing  operation
through the pointer  p.  The command div  divides X  by 10,  stores  the
result  back  to  X,  and  the  remainder  to  Z.  The  following  command
toref writes the value of Z into the cell pointed to by p. This process
continues  until  X  is  zero.  In  the  next  portion,  marked  by  the  label
print, the pointer p runs back until it is equal to q, which is  initial-
ized  to  A,  which  is  the  beginning  of  the  array.  The  command  deref
copies  the  value  from the  array  to  Z.  Then,  the  ASCII  code  (48)  for
character  0  is  added  and  the  byte  is  printed.  (It  is  assumed  that  the
memory cell is a byte not less than eight bits.)

10. Input and Output

At this point, it is possible to write a program that can add, subtract,
multiply, divide, iterate, dereference, and jump. To produce an output
or  receive  an  input,  we  have  to  define  what  is  the  output  and input.
This  is  called  the  pragmatics  of  the  language  or  the  environment  of
the abstract machine that implements the language. Any definition of
input to or output from the abstract machine will be a burden of the
environment, or in our case, the emulator of the language (or proces-
sor  if  implemented  as  hardware).  Since  the  program  can  copy  only
bits, it is natural to define a stream of bits as bits copied to or from a
particular  address.  The  special  address  (-1)  has  already  been  intro-
duced  as  the  halt  address;  a  program  halts  if  the  process  control  is
passed to it. The same address can be used without ambiguity.

.def out H
H'0 -1
H'1 -1
H'2 -1
H'3 -1
H'4 -1
H'5 -1
H'6 -1
H'7 -1
.end

.def in H
-1 H'0
-1 H'1
-1 H'2
-1 H'3
-1 H'4
-1 H'5
-1 H'6
-1 H'7
.end

Note that only the lower eight bits are copied to and from the word.
This  is  for  practical  reasons.  With  this  definition  it  is  possible  to
write  assembly  code  that  is  independent  of  word  size  that  will  input
and output characters as 8-bit symbols.

The emulator keeps buffers of up to eight bits. When the program
outputs  a  bit,  it  is  placed  into  the  buffer.  When  the  buffer  is  full,  a
character  in  ASCII  code  is  flushed  to  the  standard  emulator’s output
from the buffer.  When the  program copies  a  bit  from the input,  it  is
removed from the input buffer; and if the buffer is empty, a character
is read and its bits are placed into the buffer.
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The emulator keeps buffers of up to eight bits. When the program
outputs  a  bit,  it  is  placed  into  the  buffer.  When  the  buffer  is  full,  a
character  in  ASCII  code  is  flushed  to  the  standard  emulator’s output
from the buffer.  When the  program copies  a  bit  from the input,  it  is
removed from the input buffer; and if the buffer is empty, a character
is read and its bits are placed into the buffer.

Here is a program that prints the first 12 factorials.
      Z0:0 Z1:0

start:.prn X
      .mul X Y Y
      .out ex
      .out eq
      .prn Y
      .out eol
      .inc X

      .ifeq X TH -1 start

      X:1 Y:1 ex:33
      eol:10 eq:61 TH:13

The macro prn is a printing command described in Section 9. Here is
the output of the program.

1!=1
2!=2
3!=6
4!=24
5!=120
6!=720
7!=5040
8!=40320
9!=362880
10!=3628800
11!=39916800
12!=479001600

This  program  runs  sufficiently  quickly  on  a  modern  computer  with
the  current  implementation  of  the  assembler,  emulator,  and  a  collec-
tion  of  macro-defined  commands.  The  word  size  is  32  bits  and  the
size of the program (after assembling) is about 10 000 instructions.

11. Functions and Library

It  is  handy to  put  all  macro definitions  into  one  file—a library—and
use  it  with  any  program.  For  this,  a  third  keyword  command  is  de-
fined (the other two are def and end):

.include library_file_name 

Any program using a library is required to include it and start with
the line (Z0:0 Z1:0). For example, the following code prints “Hi”.
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Z0:0 Z1:0

.out H

.out i
0 0 -1

H:72 i:105

.include lib

If all the command definitions described in this paper were defined
as  macros,  the  resulting  code  for  even  a  simple  program  would  be
enormous.  This  is  because  macros  are  heavily  defined  through  other
macros,  meaning  that  any  command  is  expanded  or  inlined  at  every
place it is used. One substitution triggers other substitutions down the
hierarchy  of  macro  definitions  (see  Appendix  A).  To  deal  with  this
problem a command can be defined as the actual  code working with
its  own  arguments.  Such  pieces  of  code  are  called  functions.  The
macro definition  copies  the  formal  arguments  to  the  function’s  argu-
ments  and  passes  the  process  control  to  the  function’s  entry  point.
The caller code also has to pass its current address to enable the pro-
cess control to be returned back to the caller code. Once control is re-
turned from the function, the macro definition can copy the result to
the  arguments  if  necessary.  Obviously,  these  functions  cannot  be
recursive  because  there  is  no  concept  of  stack.  However,  it  does  not
mean  that  this  concept  cannot  be  introduced;  it  is  implemented  for
Higher Subleq [3].

For  example,  the  subtraction  sub  macro  and  function  are  defined
in the following.

.def sub X Y Z : sub_f_X sub_f_Y sub_f_RET sub_f
        .copy X sub_f_X
        .copy Y sub_f_Y
        .copy L sub_f_RET
        0 0 sub_f
        L:J 0
        J:.copy sub_f_X Z
.end

:sub_f: .sub_f_def sub_f_X  sub_f_Y
sub_f_RET:0 sub_f_X:0 sub_f_Y:0

# sub internal macro definition
.def sub_f_def X Y : sub_f_RET

        .copy sub_f_RET Return

        .inv Y
        .inc Y
        .add X Y X

        End:0 0 Return:0

.end
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.def sub X Y Z : sub_f_X sub_f_Y sub_f_RET sub_f
        .copy X sub_f_X
        .copy Y sub_f_Y
        .copy L sub_f_RET
        0 0 sub_f
        L:J 0
        J:.copy sub_f_X Z
.end

:sub_f: .sub_f_def sub_f_X  sub_f_Y
sub_f_RET:0 sub_f_X:0 sub_f_Y:0

# sub internal macro definition
.def sub_f_def X Y : sub_f_RET

        .copy sub_f_RET Return

        .inv Y
        .inc Y
        .add X Y X

        End:0 0 Return:0

.end

First,  there  is  a  macro  definition  that  copies  two  arguments  into
global arguments for the function. Next is the global definition of the
entry point for the function. The body of the function is defined again
through  the  macro  just  to  keep  the  internal  names  outside  of  the
global  scope.  Ignore  for  now  that  a  colon  precedes  the  label  for  the
function entry point. The next line defines memory cells for the return
value  and  the  two arguments.  Two are  enough,  because  the  result  is
passed back inside the first function argument. The next line is a com-
ment.  Then there is  the body of the function. Its  first  command is to
copy the return address to its last instruction, an unconditional jump
back  to  the  caller’s  code.  This  copy  command  can  be  saved  if  the
outer macro can copy directly to this memory cell. 

Functions  allow  the  same  code  to  be  executed  multiple  times  in-
stead  of  replicating  code  in  every  place  where  an  operation  is  re-
quired. However, there is a side effect:  since the entry point is global
(not inside the macro definition) the code for the function will be pre-
sent in the program even if  this function is  not used. This is  undesir-
able.  Small  programs  have  to  remain  small  after  assembling,  and
should  not  include  the  whole  library.  To  cope  with  this  situation  an
additional  mechanism  has  been  added  to  the  assembler.  It  marks  a
command,  an instruction or  a  macro command,  as  conditional  if  the
line  begins  with  a  colon.  If  its  name—the  label—becomes  an  unre-
solved symbol, the command is added to the program. This is why the
line (sub_f) in the previous example begins with a colon.

12. Conclusion

In this paper two goals have been achieved. One is that another one in-
struction set computer (OISC) language has been invented that seems
to  have  a  much  simpler  instruction  set  than  the  currently  known
OISC languages; it does not explicitly require logic gates. In February
2010 Marc Scibetta published on his web page a model incorporating
bit-inversion and a conditional jump.

The other goal has been to prove that bit  copying operations cou-
pled with referencing (or addressing) is enough to build a model that
allows Turing-complete  calculations.  It  turns  out  that  the  goal  is  not
only possible in principle, but also practically achievable. Simple pro-
grams written in this bit-to-bit copying language work within reason-
able time and space resource limits.  For example,  using the emulator
on  a  personal  computer,  a  program can  calculate  the  factorial  of  12
within  seconds.  The  program  multiplies  numbers  from  1  to  12,  and
then uses modular division to print digits of the result.

Only assembly languages with a few library macro commands can
be regarded exactly as Turing-complete because they do not have the
memory cell  size  boundary,  which limits  the address  space.  Bit  copy-
ing  instructions  are  loosely  Turing-complete,  or  more  precisely,  they
are  of  the  linearly  bounded automaton computational  class,  which is
the class that real computers belong to. A formal proof can be found
in  [6]  where  an  interpreter  of  a  Turing-complete  language  DBFI  de-
scribed  in  [7]  is  presented.  Keymaker  (esolangs.org  user)  argued  that
the instruction language could be made Turing-complete if addressing
is relative, not absolute. It seems that it is possible to redefine the lan-
guage  to  use  relative  addressing,  but  that  is  outside  the  scope  of  this
paper.
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Only assembly languages with a few library macro commands can
be regarded exactly as Turing-complete because they do not have the
memory cell  size  boundary,  which limits  the address  space.  Bit  copy-
ing  instructions  are  loosely  Turing-complete,  or  more  precisely,  they
are  of  the  linearly  bounded automaton computational  class,  which is
the class that real computers belong to. A formal proof can be found
in  [6]  where  an  interpreter  of  a  Turing-complete  language  DBFI  de-
scribed  in  [7]  is  presented.  Keymaker  (esolangs.org  user)  argued  that
the instruction language could be made Turing-complete if addressing
is relative, not absolute. It seems that it is possible to redefine the lan-
guage  to  use  relative  addressing,  but  that  is  outside  the  scope  of  this
paper.

The language presented in this paper has been implemented. Its as-
sembler, emulator, and the library can be downloaded from [6]. 
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Appendix

A.

The  following  diagram  represents  dependencies  between  functions
and macros in the library of the current implementation [6]. Direct de-
pendencies, which are also indirect, are omitted. Different implementa-
tion  algorithms  would  result  in  different  dependency  diagrams,  but
general dependency levels would be the same. 
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B.

B.1 .add
This code defines the addition operation as described in Section 7.

        .copy ONE ctr
        .copy ZERO adr

begin:  .copy ZERO btr
        .testL adr testx inctestx

inctestx: .inc btr
testx:  .testL X testy inctesty

inctesty: .inc btr
testy:  .testL Y testz inctestz

inctestz: .inc btr
testz:  btr Z
        btr'1 adr'1

        .testH ctr rollcont rollback

rollcont: .shiftL ctr
        .rollR adr
        .rollR X
        .rollR Y
        .rollR Z
        0 0 begin

rollback: .testL ctr roll End

roll:   .shiftR ctr
        .rollL Z
        0 0 rollback

        End:0 0
        …
        ctr:0 adr:0 btr:0

The ancillary variable ctr is used to count the number of rolls ap-
plied  to  the  arguments.  The  variable  adr  is  the  adder,  which  is  used
for passing over bits  to the next bit  position.  The variable  btr  is  the
sum  of  three  bits  taken  from  the  same  bit  position  of  the  two  sum-
ming arguments and the adder.
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B.2 .inv
The  code  inverting  bits  in  one  word  is  straightforward.  ctr  is,  as
usual, an ancillary variable.

        .copy ONE ctr

begin:  .testL ARG copy1 copy0

copy1:  ONE ARG 4?
copy0:  ZERO ARG

        .testH ctr rollcont rollback

rollcont: .shiftL ctr
        .rollR ARG
        0 0 begin

rollback: .testL ctr roll End

roll:   .shiftR ctr
        .rollL ARG
        0 0 rollback

        End:0 0

B.3 .div
Here  is  the  working  code  to  implement  the  division  algorithm  de-
scribed in Section 9. Its arguments are: X—dividend, Y—divisor, Z—re-
sult of integer division, and R—remainder.

        .copy ZERO Z

        .testH X L1 End
L1:     .testH Y L2 End
L2:     .ifzero Y End begin

begin:  .iflt X Y L3 L4

L3:     .copy X R
        0 0 End

L4:     .copy Y b1
        .copy ONE i1

next:   .copy b1 bp
        .copy i1 ip
        .shiftL b1
        .shiftL i1

        .iflt X b1 rec L5

rec:    .sub X bp X
        .add Z ip Z
        0 0 begin

L5:     .testH b1 next End

        End:0 0
        …
        b1:0 bp:0 0
        i1:0 ip:0 0
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        .copy ZERO Z

        .testH X L1 End
L1:     .testH Y L2 End
L2:     .ifzero Y End begin

begin:  .iflt X Y L3 L4

L3:     .copy X R
        0 0 End

L4:     .copy Y b1
        .copy ONE i1

next:   .copy b1 bp
        .copy i1 ip
        .shiftL b1
        .shiftL i1

        .iflt X b1 rec L5

rec:    .sub X bp X
        .add Z ip Z
        0 0 begin

L5:     .testH b1 next End

        End:0 0
        …
        b1:0 bp:0 0
        i1:0 ip:0 0
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