
Bit Copying: The Ultimate Computational
Simplicity

Oleg Mazonka

Defence Science and Technology Organisation
Edinburgh SA 5011 Australia
mazonka@gmail.com

A computational abstract machine based on two operations, referenc-
ing and bit copying, is presented. These operations are sufficient for
carrying out any computation and can be used as the primitives for a
Turing-complete programming language. The interesting point is that
computations can be performed without logic operations such as AND or
OR. The compiler and emulator of this language with sample programs
are available on the internet.

1. Introduction

In a quest to build an imperative language with the smallest possible
number of instructions, several one instruction set computer (OISC)
languages have been invented. One example, the ultimate RISC archi-
tecture [1], utilizes the single instruction copy memory to memory.
Complex behavior of such a machine is achieved by mapping the ma-
chine registers onto memory cells. For example, a memory cell with
the address 0 is the instruction pointer, so copying to this address ef-
fectively realizes an unconditional jump. Arithmetic operations are
also achieved by using special registers in memory that perform more
complex operations at the hardware level.

Another example, Subleq [2], does not have memory mapped regis-
ters. Its computational power is based on program self-modification
and a sufficiently complex instruction set. The abstract machine is de-
fined as a process working on an infinite array of memory cells with
each instruction having three operands. The processor reads three
operands from the memory, subsequent cells A B C, subtracts the value
of the cell addressed by A from the value of the cell addressed by B,
and stores the result in the same cell addressed by B. If the result is
less than or equal to zero, the execution jumps to the address C, and
the processor reads the next instruction from there; otherwise the
next three operands are read from memory. This language is proven
to be Turing-complete. There are a few variations of this language
that are similar in principle. A compiler from a simple C-like language
has been written to compile programs into Subleq processor code [3].
Attempts to reduce the complexity of the atomic operation have been
undertaken. For example, Rojas [4] proves that conditional branching
is not necessary for universal computation given the ability of code
self-modification. Complex Systems, 19 © 2011 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.3.263

Another example, Subleq [2], does not have memory mapped regis-
ters. Its computational power is based on program self-modification
and a sufficiently complex instruction set. The abstract machine is de-
fined as a process working on an infinite array of memory cells with
each instruction having three operands. The processor reads three
operands from the memory, subsequent cells A B C, subtracts the value
of the cell addressed by A from the value of the cell addressed by B,
and stores the result in the same cell addressed by B. If the result is
less than or equal to zero, the execution jumps to the address C, and
the processor reads the next instruction from there; otherwise the
next three operands are read from memory. This language is proven
to be Turing-complete. There are a few variations of this language
that are similar in principle. A compiler from a simple C-like language
has been written to compile programs into Subleq processor code [3].
Attempts to reduce the complexity of the atomic operation have been
undertaken. For example, Rojas [4] proves that conditional branching
is not necessary for universal computation given the ability of code
self-modification.

Although OISC languages have just one instruction, the instruction
does a number of manipulations or computations under the hood.
Hence, there is a question: which language has the simplest instruc-
tion and is it possible to make a language with a simpler instruction?

Another interesting question relates to logic operations. It is com-
monly known that classical computations are usually done using bit
logic operations: AND, OR, XOR, and NOT. These operations are neither
a complete set nor a minimal set required for computation. OR and
XOR can easily be expressed via AND and NOT and vice versa. However,
it is commonly assumed that at least AND or OR-like operations are
needed to make real computations. It is not possible to combine OR
and XOR operations to erase a single bit. Therefore, they are unable to
produce classical computations. Hence, a question arises: is it possible
to make programmed computation without using logical operations
like AND and OR?

2. Referencing as a Computational Operation

Surprisingly, OR and XOR reversible operations can produce irre-
versible results if they are used in combination with referencing. In
Table 1 the first row has the initial three bits. The second row has the
same bits with one of them inverted (NOT operation applied). The in-
verted bit is referenced by all three, as the index of the bit equal to its
binary representation taken modulo 3. It can be seen that two initial
states (001 and 010) produce the same final result (011), making this
entire operation irreversible.

000 001 010 011 100 101 110 111

100 011 011 111 110 100 010 101

Table 1.

A machine, similar to register machines described by S. Wolfram
[5], can be realized by using a continuous process of bit inversion on
the same set of bits. For example, a 3-bit machine produces a se-
quence (000) (100) (110) (010) (011) (111) (101) (100) ….

Figure 1 shows Wolfram diagrams for 2-, 3-, 4-, 5-, 6-, and 7-bit
machines. On the right side of each diagram bits are represented as
squares with dark for 1 and white for 0. On the left side, a small
square shows the interpreted value of the bits—the address of the
next bit to be inverted. The address is calculated as the binary represen-
tation of some integer taken modulo the number of bits.

264 O. Mazonka

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

Figure 1.

Taking the binary value and modulo may seem like complex opera-
tions. However, there is a simple model simulating such behavior. Al-
low bits to be positioned in a circle with an arrow pointing to any bit.
Each bit is assigned a rule for how to rotate the arrow if its value is 1.
At each step the arrow rotates according to the rules and the values of
all bits, and at the end of the step the bit pointed to by the arrow is
inverted.

Figure 2 shows the diagrams for 17-, 18-, and 19-bit machines simi-
lar to those shown in Figure 1. The picture is scaled 1 to 10 in the ver-
tical direction and 1000 steps are shown.

Table 2 shows the size of the loop (the size of the pattern on the
diagram) that the machine eventually enters when started with the ini-
tial zero values of all bits. Bigger loop sizes correspond to more com-
plex behavior of the model.

Bit Copying: The Ultimate Computational Simplicity 265

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

Figure 2.

Bits Loop Size Bits Loop Size Bits Loop Size

3 6 13 66 23 18 812

4 2 14 50 24 6

5 8 15 162 25 48 000

6 6 16 2 26 544

7 50 17 346 27 54

8 2 18 18 28 62

9 18 19 1700 29 128 116

10 10 20 10 30 30

11 112 21 12 31 635 908

12 6 22 118 32 2

Table 2.

In another example, shown in Table 3, the second row has one bit
modified by the formula

(p[A] XOR p[B]) Ø p[A],

266 O. Mazonka

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

where A is the value of the first two bits, B is the value of the last two
bits, and p[] is the bit taken by the index.

0000 0001 0010 0011 0100 0101 0110

0000 0001 1010 1011 1100 0001 …

Table 3.

The operations applied to bits are reversible, but referencing makes
the whole process irreversible. Even if it feels like this process could
do calculations, it is still difficult to bring it into play to make a frame-
work that is able to do desirable computations.

3. Bit Copying Language

It turns out that by taking the converse approach—that is, to combine
a bit copying operation, which is irreversible, with referencing—the
programmable computation is possible at the bit level.

A bit copying instruction always erases one bit. On first inspection
it would seem that the entire amount of information in the system is
being forever reduced until no changes are made. However, this is not
the case. For example, in the process forever do (a Ø b, c Ø a, b Ø c),
where a, b, and c are bits, and arrow means copy, the bits will circle
in the loop forever. This would be interpreted as a steady but not
static state. To do something more interesting, let us add a meaning-
ful representation to each collection of bits by associating an address
with each.

Let us define the imperative language, in which the abstract ma-
chine operates on an array of memory bits addressed from 0. Bits are
grouped into words of a particular size (memory cells). For examples
of 8-bit words see Table 4.

Memory 01010101 00001111 10101010 11001100 00110011 …

Address 0 8 16 24 32 40

Table 4.

Each instruction consists of three operands: A B C, where each
operand is one word. The instruction copies the bit addressed by A
into the bit addressed by B, then jumps the process control to address
C. The operand C is read after the bit copying is done. This allows the
instruction to be self-modifiable (even though just one bit can be modi-
fied at a single point in time).

Bit Copying: The Ultimate Computational Simplicity 267

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

Since each word represents a bit address in the memory, the exact
way of address interpretation can be left undefined without sacrificing
the concept. In this implementation, however, it is assumed to be little-
endian binary bit representation.

Another undefined feature that is up to the implementation is how
to consider grouping memory bits into words: physical—all words are
aligned on memory cell size address, or logical—words are grouped
counting from the current address. In the second case, the operand C
is allowed to specify an address of any bit, not necessarily aligned to
the memory cell.

This sole instruction does not do any more than copy a bit from
one place to another, and yet this simple single instruction is enough
to make the language able to execute a preprogrammed sequence of
operations. The abstract machine obviously does something more
than copying bits: it references bits and transfers the process control
to the next address of execution. However, this work may not need
logic operations AND or OR, and is done outside of the execution
model, which means it can be emulated by the same bit copying pro-
cess.

4. Assembly

To simplify the presentation of the language instruction set, we use
the following assembly notation. Each word is denoted as L:V'x,
where L is an optional label serving as the address of this memory
cell, V is the value of this memory, and x is the optional bit offset
within the word (memory cell). Each instruction is written on a sepa-
rate line. For example:

A'0 B'1 A
A:18 B:7 0

gives two instructions. The first instruction copies the lowest bit of
cell A (whose value is 18) into the second bit of cell B (whose value is
7), then jumps to the instruction addressed by A, which is the next in-
struction. After the first instruction is executed, the value of cell B is
changed to 5. For example, in 8-bit word memory these two instruc-
tions are

24 33 24 18 7 0.

If the bit offset is omitted, it is considered to be 0. So, A is the same as
A'0.

If the operand C is absent, it is assumed to have the value of the
next cell address, that is,

A B

is the same as
A B C
C: …

268 O. Mazonka

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

which is the same as
A B ?

Question mark (?) is the address of the next memory cell, that is, the
address of the first bit of the following word. Let us denote (n?) as a
multiple to cell size counted from the current position. So, (0?) means
the address of this position; (1?) is the same as (?) and is the next cell;
(2?) is one after the next cell; and (-2?) is one before the previous cell.
For example, the instruction

A B -2?

is the same as
C:A B C

and is an infinite loop (assuming that it does not modify C), as the bit
referenced by A is copied to the bit referenced by B and the control is
transferred to the address of the cell C:A, which is the beginning of
the original instruction. Remember that A is the value and C is the ad-
dress of C:A.

Given an assembly text, we also need an environment to run a pro-
gram that is written in this language. Therefore two steps are neces-
sary: (1) Compile the text into binary code as an array of bits to form
instructions. (2) Execute the binary coded instructions on the abstract
machine. A program called an assembler does the first step, and an
emulator can do the second.

5. Macro Commands

To make a program description shorter and more readable, let us de-
fine a macro substitution mechanism as in the following example.

.copy A B
…
.def copy X Y
X’0 Y’0
X’1 Y’1
…
X’w Y’w
.end

The first line is the macro command that is substituted by the macro
definition body starting with ".def" and ending with ".end". The
name after ".def" becomes the name of the macro and all subsequent
names are formal arguments to it. After macro substitution, the code
becomes:

A’0 B’0
A’1 B’1
…
A’w B’w

Bit Copying: The Ultimate Computational Simplicity 269

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

Here, w is the index of the highest bit and is equal to the size of the
memory cell minus one. Let us denote the word size as W, W = w + 1.

Two other useful macro definitions are shift and roll. shiftL shifts
bits in the memory cell by 1 from lower to higher, and the lowest bit
is set to 0. It is the same as arithmetic multiplication by 2, or the C
programming language operation "<<=1".

.def shiftL X : ZERO
X'(w-1) X'w
X'(w-2) X'(w-1)
…
X'1 X'2
X'0 X'1
ZERO X
.end

ZERO is defined at some place as ZERO:0. It appears after the colon at
the end of the macro definition argument list to signify that this name
is defined outside of the macro definition. This is necessary because
the assembler tries to resolve all names within the body of a macro
definition or to tie them to the formal arguments. Note that the last
instruction copies the lower bit of the ZERO memory cell to the lower
bit of X.

shiftR is the same as shiftL but works in the opposite direction
and corresponds to integer division by 2, or the C shift operator
">>=1".

Roll macros are similar to shift macros with the exception that
they copy the end bit back to the front. They can be defined in terms
of the shift macro definitions.

.def rollR X : TMP
X TMP
.shiftR X
TMP X'w
.end

.def rollL X : TMP
X'w TMP
.shiftL X
TMP X
.end

The TMP memory cell is a placeholder and is defined in an external
library.

The macros copy, shift, and roll are useful, but lack the logic to be
able to perform useful calculations.

6. Conditional Jump

Consider the following code.
.def jump01 A b
A'b 2?'k
0 J'0
A'b 2?'k
1 J'1
A'b 2?'k
2 J'2
…
A'b 2?'k
(w-2) J'(w-2)
A'b 2?'k
(w-1) J'(w-1)
A'b 2?'k
w J'w J:0
.end

270 O. Mazonka

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

.def jump01 A b
A'b 2?'k
0 J'0
A'b 2?'k
1 J'1
A'b 2?'k
2 J'2
…
A'b 2?'k
(w-2) J'(w-2)
A'b 2?'k
(w-1) J'(w-1)
A'b 2?'k
w J'w J:0
.end

The offset k is defined such that 2k = W. Since a word is an address
of a bit in the memory, there are k bits corresponding to the offset
within a word. The rest of the word’s bits specify the address of a
memory cell. For example, for a 32-bit word k is 5 because modifica-
tions in the sixth bit and higher change the address of the memory
cell, but not the offset inside the memory cell. Note that when writing
to the offset, k updates the sixth bit if k = 5.

The first line moves bit b of memory cell A to the kth bit of the first
operand of the next instruction. After this is done, the first operand of
the next instruction is zero or equal to W. The next instruction copies
the value of the first bit of the cell addressed as either 0 or W to the
cell labeled J—which is the last memory cell in this list of instruc-
tions, and which is the address the process control will go to after the
last instruction is executed. The subsequent lines [(A'b 2?'k)(1
J'1)] copy the second bit to cell J, and so on.

When the last bit is copied, cell J holds the same value as the cell
with address 0 (the first word in the memory) or the cell with address
W (the second word in the memory) depending on whether A'b was 0
or 1.

By marking the first two memory cells in the program as special, in
the sense that they can be used only for this operation, it is possible to
write a generic test for a particular bit.

Z0:0 Z1:0
.def test A b B0 B1 : Z0 Z1
.copy L0 Z0
.copy L1 Z1
.jump01 A b
L0:B0 L1:B1
.end

This code defines a macro that tests bit b of memory cell A and jumps
to either address B0 or B1 if the bit is 0 or 1 correspondingly.

Bit Copying: The Ultimate Computational Simplicity 271

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

Testing a bit is a core requirement of all the higher-level
computations described later. In most of these cases testing a bit
involves checking the lowest or highest bit in the word:

.def testL A B0 B1

.test A 0 B0 B1

.end

.def testH A B0 B1

.test A w B0 B1

.end

7. Arithmetic

One of the most basic operations, which will be required for defini-
tions of other more complex constructions, is the increment opera-
tion. To increment a memory cell A, the roll, shift, and test macros
can be combined in the following way.

 .copy ONE ctr

begin: .testL A test0 test1

test0: ONE A rollback
test1: ZERO A
 .testH ctr next rollback

next: .shiftL ctr
 .rollR A
 0 0 begin

rollback: .testL ctr roll End

roll: .shiftR ctr
 .rollL A
 0 0 rollback

 End:0 0
 …
 ctr:0 0

The first line initializes counter ctr to 1. The lowest bit of the
operand A is swapped, and the operand and counter are rolled until ei-
ther the operand bit is zero or the counter bit 1 reaches the highest bit
position, which means that all w bits of the operand were processed.
After this the operand can be rolled back to the original bit position.

In the code ZERO and ONE are defined as ZERO:0 and ONE:1. The
instruction 0 0 label is used as an unconditional jump to address
label. It copies the first bit in the memory to itself, and does not
change its value.

Addition can be defined in a similar way with the exception that
there are four operands. These are in order: first number, second num-
ber, result, and the adder (for passing over an extra bit). The lowest
bits of the adder and first and second numbers are added, giving two
bits, one of which goes to the lowest bit of the result, and the other
goes to the second bit of the adder. Then, all four operands are rolled
and the process continues. Code for the addition command add is
given in Appendix B.1.

272 O. Mazonka

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

Addition can be defined in a similar way with the exception that
there are four operands. These are in order: first number, second num-
ber, result, and the adder (for passing over an extra bit). The lowest
bits of the adder and first and second numbers are added, giving two
bits, one of which goes to the lowest bit of the result, and the other
goes to the second bit of the adder. Then, all four operands are rolled
and the process continues. Code for the addition command add is
given in Appendix B.1.

Subtraction can simply be defined as
.def sub X Y Z
.inv Y
.inc Y
.add X Y Z
.end

where inc is increment, add is addition (Z=X+Y), and inv is the inver-
sion operation, which simply inverts all bits in a memory cell. The in-
version operation code is simpler than increment and is given in Ap-
pendix B.2.

8. Process Control and Pointers

The following definitions can be used to test for particular values of
variables.

.def ifeq X Y yes no

.sub X Y Z

.ifzero Z yes no
Z:0 0
.end

.def ifzero Z yes no

.testH Z cont no
cont: .copy Z A
.inv A
.inc A
.testH A yes no
A:0 0
.end

.def iflt A B yes no

.sub A B Z

.testH Z no yes
Z:0 0
.end

The first macro ifeq checks if both arguments are equal to each other
by testing the result of the subtraction. The second macro ifzero
tests whether its argument is equal to zero. This is done by testing the
highest bit (negative value); if it is zero then negate the argument (in a
simple binary signed representation inversion and increment produce
the same result as negation) and test the highest bit again. Note that
the argument is copied before it is negated because it should not be
changed. The third macro iflt tests if the first argument is less than
the second.

Bit Copying: The Ultimate Computational Simplicity 273

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

The first macro ifeq checks if both arguments are equal to each other
by testing the result of the subtraction. The second macro ifzero
tests whether its argument is equal to zero. This is done by testing the
highest bit (negative value); if it is zero then negate the argument (in a
simple binary signed representation inversion and increment produce
the same result as negation) and test the highest bit again. Note that
the argument is copied before it is negated because it should not be
changed. The third macro iflt tests if the first argument is less than
the second.

To write the classical “Hello, World!” program by iterating a
pointer over an array of cells, the tricky operation of pointer derefer-
encing needs to be defined. Consider the following program.

 Z0:0 Z1:0

start: .deref p X
 .testH X print -1
print: .out X
 .add p W p
 0 0 start

 p:H X:0
 H:72 101 108
 108 111 44
 32 87 111
 114 108 100
 33 10 -1

The label H is the address of a string holding the ASCII code for
“Hello, World!” followed by the end-of-line sentinel. p is a pointer—
a cell initialized with the address of the string.

The first instruction does not do anything since it copies the bit ad-
dressed 0 to itself. It is necessary because the conditional jump (which
uses the first two words of the memory) is part of other macro com-
mands. The next command dereferences p by copying the value of the
cell, whose address is stored in p, into cell X (this operation is
discussed below). Check if X is negative. If it is, go to the address (-1),
otherwise continue execution with the next line. The address (-1) is
special because we assume that the program halts if control is passed
to it. In fact, this is similar to how halt is defined in other OISC lan-
guages, for example, Subleq [2]. The next line prints the ASCII charac-
ter in cell X. (The specific implementation of printing is discussed in
Section 10.) If X was not negative, the pointer p has not reached the
end of the array and still points to a valid array element. The pointer
is incremented by the size of the memory cell and this process is
continued until the halting instruction is executed.

It is possible to copy a memory cell referenced by another memory
cell by setting up an iterative instruction with the source and target
addresses. The instruction is repeated W times, incrementing the
addresses each time until the whole word is copied. An example is
given in the following code.

274 O. Mazonka

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

 .copy ONE ctr
 .copy P A
 .copy L B

begin: A:0 B:0
 .testH ctr next End

next: .shiftL ctr
 .inc A
 .inc B
 0 0 begin

 End: …
 L:X ctr:0

This block of code performs the same task as the C programming lan-
guage statement X=*P. The counter is prepared as in the previous ex-
amples. The pointer value is copied to the first operand of the itera-
tive instruction (A:0 B:0), then the address of the result cell is copied
into the second operand of the iterative instruction. Now, the iterative
instruction is executed W times with each execution incrementing the
addresses—the values of the operands.

This approach can be used for copying a value into a memory cell
pointed to by another pointer. It is just a matter of swapping the A
and B operands in the iterative instruction.

9. More Arithmetic

Multiplication is quite simple once shift and addition are imple-
mented. (The algorithm does not properly handle negative values; the
sacrifice is made for the sake of simplicity.)

 .copy ZERO Z

begin: .ifzero X End L1
L1: .testL X next L2
L2: .add Z Y Z
next: .shiftR X
 .shiftL Y
 0 0 begin

 End:0 0

This code shifts the first multiplier to the left and the second multi-
plier to the right while at the same time accumulating the result by
adding the second multiplier if the lowest bit of the first multiplier is
1. This algorithm is expressed in a simple formula:

Bit Copying: The Ultimate Computational Simplicity 275

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

X µ Y =
X ê 2 µ 2 Y, if X even;
HX - 1L ê 2 µ 2 Y + Y, if X odd.

Division is slightly more complex. Given two numbers X and Y, in-
crease Y by 2 until the next increase gives Y greater than X. At the
same time, increase a variable Z by 2, which is initialized to 1. Now,
Z holds part of the result of division (the rest is to be calculated fur-
ther using X - Y) and Y, which is done iteratively accumulating all Z.
At the last step when X < Y, X is the remainder. The code for divi-
sion is presented in Appendix B.3.

The division operation is imperative for printing numbers as deci-
mal strings. The algorithm implementing this divides the value by 10
and stores the remainders into an array. When the value becomes 0, it
iterates backward over the array, printing numbers in ASCII code.

 .testH X begin negate

negate: .inv X
 .inc X
 .out minus

begin: .div X ten X Z
 .toref Z p
 .add p W p
 .ifzero X print begin

print: .sub p W p
 .deref p Z
 .add Z d0 Z
 .out Z
 .ifeq p q End print

 End:0 0
 …
 Z:0 d0:48 ten:10
 p:A q:A minus:45
 A:0 0 0
 …

The first portion, labeled negate, checks whether the argument is less
than 0. If so, then the argument is negated and the minus sign is
printed. The second section repeatedly divides the argument and
stores the results into the array A by a dereferencing operation
through the pointer p. The command div divides X by 10, stores the
result back to X, and the remainder to Z. The following command
toref writes the value of Z into the cell pointed to by p. This process
continues until X is zero. In the next portion, marked by the label
print, the pointer p runs back until it is equal to q, which is initial-
ized to A, which is the beginning of the array. The command deref
copies the value from the array to Z. Then, the ASCII code (48) for
character 0 is added and the byte is printed. (It is assumed that the
memory cell is a byte not less than eight bits.)

276 O. Mazonka

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

The first portion, labeled negate, checks whether the argument is less
than 0. If so, then the argument is negated and the minus sign is
printed. The second section repeatedly divides the argument and
stores the results into the array A by a dereferencing operation
through the pointer p. The command div divides X by 10, stores the
result back to X, and the remainder to Z. The following command
toref writes the value of Z into the cell pointed to by p. This process
continues until X is zero. In the next portion, marked by the label
print, the pointer p runs back until it is equal to q, which is initial-
ized to A, which is the beginning of the array. The command deref
copies the value from the array to Z. Then, the ASCII code (48) for
character 0 is added and the byte is printed. (It is assumed that the
memory cell is a byte not less than eight bits.)

10. Input and Output

At this point, it is possible to write a program that can add, subtract,
multiply, divide, iterate, dereference, and jump. To produce an output
or receive an input, we have to define what is the output and input.
This is called the pragmatics of the language or the environment of
the abstract machine that implements the language. Any definition of
input to or output from the abstract machine will be a burden of the
environment, or in our case, the emulator of the language (or proces-
sor if implemented as hardware). Since the program can copy only
bits, it is natural to define a stream of bits as bits copied to or from a
particular address. The special address (-1) has already been intro-
duced as the halt address; a program halts if the process control is
passed to it. The same address can be used without ambiguity.

.def out H
H'0 -1
H'1 -1
H'2 -1
H'3 -1
H'4 -1
H'5 -1
H'6 -1
H'7 -1
.end

.def in H
-1 H'0
-1 H'1
-1 H'2
-1 H'3
-1 H'4
-1 H'5
-1 H'6
-1 H'7
.end

Note that only the lower eight bits are copied to and from the word.
This is for practical reasons. With this definition it is possible to
write assembly code that is independent of word size that will input
and output characters as 8-bit symbols.

The emulator keeps buffers of up to eight bits. When the program
outputs a bit, it is placed into the buffer. When the buffer is full, a
character in ASCII code is flushed to the standard emulator’s output
from the buffer. When the program copies a bit from the input, it is
removed from the input buffer; and if the buffer is empty, a character
is read and its bits are placed into the buffer.

Bit Copying: The Ultimate Computational Simplicity 277

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

The emulator keeps buffers of up to eight bits. When the program
outputs a bit, it is placed into the buffer. When the buffer is full, a
character in ASCII code is flushed to the standard emulator’s output
from the buffer. When the program copies a bit from the input, it is
removed from the input buffer; and if the buffer is empty, a character
is read and its bits are placed into the buffer.

Here is a program that prints the first 12 factorials.
 Z0:0 Z1:0

start:.prn X
 .mul X Y Y
 .out ex
 .out eq
 .prn Y
 .out eol
 .inc X

 .ifeq X TH -1 start

 X:1 Y:1 ex:33
 eol:10 eq:61 TH:13

The macro prn is a printing command described in Section 9. Here is
the output of the program.

1!=1
2!=2
3!=6
4!=24
5!=120
6!=720
7!=5040
8!=40320
9!=362880
10!=3628800
11!=39916800
12!=479001600

This program runs sufficiently quickly on a modern computer with
the current implementation of the assembler, emulator, and a collec-
tion of macro-defined commands. The word size is 32 bits and the
size of the program (after assembling) is about 10 000 instructions.

11. Functions and Library

It is handy to put all macro definitions into one file—a library—and
use it with any program. For this, a third keyword command is de-
fined (the other two are def and end):

.include library_file_name

Any program using a library is required to include it and start with
the line (Z0:0 Z1:0). For example, the following code prints “Hi”.

278 O. Mazonka

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

Z0:0 Z1:0

.out H

.out i
0 0 -1

H:72 i:105

.include lib

If all the command definitions described in this paper were defined
as macros, the resulting code for even a simple program would be
enormous. This is because macros are heavily defined through other
macros, meaning that any command is expanded or inlined at every
place it is used. One substitution triggers other substitutions down the
hierarchy of macro definitions (see Appendix A). To deal with this
problem a command can be defined as the actual code working with
its own arguments. Such pieces of code are called functions. The
macro definition copies the formal arguments to the function’s argu-
ments and passes the process control to the function’s entry point.
The caller code also has to pass its current address to enable the pro-
cess control to be returned back to the caller code. Once control is re-
turned from the function, the macro definition can copy the result to
the arguments if necessary. Obviously, these functions cannot be
recursive because there is no concept of stack. However, it does not
mean that this concept cannot be introduced; it is implemented for
Higher Subleq [3].

For example, the subtraction sub macro and function are defined
in the following.

.def sub X Y Z : sub_f_X sub_f_Y sub_f_RET sub_f
 .copy X sub_f_X
 .copy Y sub_f_Y
 .copy L sub_f_RET
 0 0 sub_f
 L:J 0
 J:.copy sub_f_X Z
.end

:sub_f: .sub_f_def sub_f_X sub_f_Y
sub_f_RET:0 sub_f_X:0 sub_f_Y:0

sub internal macro definition
.def sub_f_def X Y : sub_f_RET

 .copy sub_f_RET Return

 .inv Y
 .inc Y
 .add X Y X

 End:0 0 Return:0

.end

Bit Copying: The Ultimate Computational Simplicity 279

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

.def sub X Y Z : sub_f_X sub_f_Y sub_f_RET sub_f
 .copy X sub_f_X
 .copy Y sub_f_Y
 .copy L sub_f_RET
 0 0 sub_f
 L:J 0
 J:.copy sub_f_X Z
.end

:sub_f: .sub_f_def sub_f_X sub_f_Y
sub_f_RET:0 sub_f_X:0 sub_f_Y:0

sub internal macro definition
.def sub_f_def X Y : sub_f_RET

 .copy sub_f_RET Return

 .inv Y
 .inc Y
 .add X Y X

 End:0 0 Return:0

.end

First, there is a macro definition that copies two arguments into
global arguments for the function. Next is the global definition of the
entry point for the function. The body of the function is defined again
through the macro just to keep the internal names outside of the
global scope. Ignore for now that a colon precedes the label for the
function entry point. The next line defines memory cells for the return
value and the two arguments. Two are enough, because the result is
passed back inside the first function argument. The next line is a com-
ment. Then there is the body of the function. Its first command is to
copy the return address to its last instruction, an unconditional jump
back to the caller’s code. This copy command can be saved if the
outer macro can copy directly to this memory cell.

Functions allow the same code to be executed multiple times in-
stead of replicating code in every place where an operation is re-
quired. However, there is a side effect: since the entry point is global
(not inside the macro definition) the code for the function will be pre-
sent in the program even if this function is not used. This is undesir-
able. Small programs have to remain small after assembling, and
should not include the whole library. To cope with this situation an
additional mechanism has been added to the assembler. It marks a
command, an instruction or a macro command, as conditional if the
line begins with a colon. If its name—the label—becomes an unre-
solved symbol, the command is added to the program. This is why the
line (sub_f) in the previous example begins with a colon.

12. Conclusion

In this paper two goals have been achieved. One is that another one in-
struction set computer (OISC) language has been invented that seems
to have a much simpler instruction set than the currently known
OISC languages; it does not explicitly require logic gates. In February
2010 Marc Scibetta published on his web page a model incorporating
bit-inversion and a conditional jump.

The other goal has been to prove that bit copying operations cou-
pled with referencing (or addressing) is enough to build a model that
allows Turing-complete calculations. It turns out that the goal is not
only possible in principle, but also practically achievable. Simple pro-
grams written in this bit-to-bit copying language work within reason-
able time and space resource limits. For example, using the emulator
on a personal computer, a program can calculate the factorial of 12
within seconds. The program multiplies numbers from 1 to 12, and
then uses modular division to print digits of the result.

Only assembly languages with a few library macro commands can
be regarded exactly as Turing-complete because they do not have the
memory cell size boundary, which limits the address space. Bit copy-
ing instructions are loosely Turing-complete, or more precisely, they
are of the linearly bounded automaton computational class, which is
the class that real computers belong to. A formal proof can be found
in [6] where an interpreter of a Turing-complete language DBFI de-
scribed in [7] is presented. Keymaker (esolangs.org user) argued that
the instruction language could be made Turing-complete if addressing
is relative, not absolute. It seems that it is possible to redefine the lan-
guage to use relative addressing, but that is outside the scope of this
paper.

280 O. Mazonka

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

Only assembly languages with a few library macro commands can
be regarded exactly as Turing-complete because they do not have the
memory cell size boundary, which limits the address space. Bit copy-
ing instructions are loosely Turing-complete, or more precisely, they
are of the linearly bounded automaton computational class, which is
the class that real computers belong to. A formal proof can be found
in [6] where an interpreter of a Turing-complete language DBFI de-
scribed in [7] is presented. Keymaker (esolangs.org user) argued that
the instruction language could be made Turing-complete if addressing
is relative, not absolute. It seems that it is possible to redefine the lan-
guage to use relative addressing, but that is outside the scope of this
paper.

The language presented in this paper has been implemented. Its as-
sembler, emulator, and the library can be downloaded from [6].

Acknowledgments

I would like to thank my daughter, Sophia Mazonka, for helping me
with English grammar. I also would like to thank James Tebneff for
valuable comments that greatly improved the clarity of this paper.

Bit Copying: The Ultimate Computational Simplicity 281

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

Appendix

A.

The following diagram represents dependencies between functions
and macros in the library of the current implementation [6]. Direct de-
pendencies, which are also indirect, are omitted. Different implementa-
tion algorithms would result in different dependency diagrams, but
general dependency levels would be the same.

282 O. Mazonka

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

B.

B.1 .add
This code defines the addition operation as described in Section 7.

 .copy ONE ctr
 .copy ZERO adr

begin: .copy ZERO btr
 .testL adr testx inctestx

inctestx: .inc btr
testx: .testL X testy inctesty

inctesty: .inc btr
testy: .testL Y testz inctestz

inctestz: .inc btr
testz: btr Z
 btr'1 adr'1

 .testH ctr rollcont rollback

rollcont: .shiftL ctr
 .rollR adr
 .rollR X
 .rollR Y
 .rollR Z
 0 0 begin

rollback: .testL ctr roll End

roll: .shiftR ctr
 .rollL Z
 0 0 rollback

 End:0 0
 …
 ctr:0 adr:0 btr:0

The ancillary variable ctr is used to count the number of rolls ap-
plied to the arguments. The variable adr is the adder, which is used
for passing over bits to the next bit position. The variable btr is the
sum of three bits taken from the same bit position of the two sum-
ming arguments and the adder.

Bit Copying: The Ultimate Computational Simplicity 283

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

B.2 .inv
The code inverting bits in one word is straightforward. ctr is, as
usual, an ancillary variable.

 .copy ONE ctr

begin: .testL ARG copy1 copy0

copy1: ONE ARG 4?
copy0: ZERO ARG

 .testH ctr rollcont rollback

rollcont: .shiftL ctr
 .rollR ARG
 0 0 begin

rollback: .testL ctr roll End

roll: .shiftR ctr
 .rollL ARG
 0 0 rollback

 End:0 0

B.3 .div
Here is the working code to implement the division algorithm de-
scribed in Section 9. Its arguments are: X—dividend, Y—divisor, Z—re-
sult of integer division, and R—remainder.

 .copy ZERO Z

 .testH X L1 End
L1: .testH Y L2 End
L2: .ifzero Y End begin

begin: .iflt X Y L3 L4

L3: .copy X R
 0 0 End

L4: .copy Y b1
 .copy ONE i1

next: .copy b1 bp
 .copy i1 ip
 .shiftL b1
 .shiftL i1

 .iflt X b1 rec L5

rec: .sub X bp X
 .add Z ip Z
 0 0 begin

L5: .testH b1 next End

 End:0 0
 …
 b1:0 bp:0 0
 i1:0 ip:0 0

284 O. Mazonka

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

 .copy ZERO Z

 .testH X L1 End
L1: .testH Y L2 End
L2: .ifzero Y End begin

begin: .iflt X Y L3 L4

L3: .copy X R
 0 0 End

L4: .copy Y b1
 .copy ONE i1

next: .copy b1 bp
 .copy i1 ip
 .shiftL b1
 .shiftL i1

 .iflt X b1 rec L5

rec: .sub X bp X
 .add Z ip Z
 0 0 begin

L5: .testH b1 next End

 End:0 0
 …
 b1:0 bp:0 0
 i1:0 ip:0 0

References

[1] D. W. Jones, “The Ultimate RISC,” ACM SIGARCH Computer Architec-
ture News, 16(3), 1988 pp. 48–55.

[2] “Subleq.” (Nov 24, 2010) http://esolangs.org/wiki/Subleq.

[3] O. Mazonka. “Higher Subleq.” (Aug 17, 2009)
http://mazonka.com/subleq/hsq.html.

[4] R. Rojas, “Conditional Branching Is Not Necessary for Universal Com-
putation in von Neumann Computers,” Journal of Universal Computer
Science, 2(11), 1996 pp. 756–767.

[5] S. Wolfram, “Register Machines,” in A New Kind of Science, Cham-
paign IL: Wolfram Media, Inc., 2002 pp. 97–102.

[6] O. Mazonka. “BitBitJump.” (Sept 2009) http://mazonka.com/bbj.

[7] O. Mazonka and D. B. Cristofani. “A Very Short Self-Interpreter.”
(Nov 21, 2003) arXiv:cs/0311032v1.

Bit Copying: The Ultimate Computational Simplicity 285

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.3.263

